Abstract
Using a combination of theoretical sequence structure recognition predictions and experimental disulfide bond assignments, a three-dimensional (3D) model of human interleukin-7 (hIL-7) was constructed that predicts atypical surface chemistry in helix D that is important for receptor activation. A 3D model of hIL-7 was built using the X-ray crystal structure of interleukin-4 (IL-4) as a template (Walter MR et al., 1992, J Mol Biol. 224:1075-1085; Walter MR et al., 1992, J Biol Chem 267:20371-20376). Core secondary structures were constructed from sequences of hIL-7 predicted to form helices. The model was constructed by superimposing IL-7 helices onto the IL-4 template and connecting them together in an up-up down-down topology. The model was finished by incorporating the disulfide bond assignments (Cys3, Cys142), (Cys35, Cys130), and (Cys48, Cys93), which were determined by MALDI mass spectroscopy and site-directed mutagenesis (Cosenza L, Sweeney E, Murphy JR, 1997, J Biol Chem 272:32995-33000). Quality analysis of the hIL-7 model identified poor structural features in the carboxyl terminus that, when further studied using hydrophobic moment analysis, detected an atypical structural property in helix D, which contains Cys 130 and Cys142. This analysis demonstrated that helix D had a hydrophobic surface exposed to bulk solvent that accounted for the poor quality of the model, but was suggestive of a region in IL-7 that maybe important for protein interactions. Alanine (Ala) substitution scanning mutagenesis was performed to test if the predicted atypical surface chemistry of helix D in the hIL-7 model is important for receptor activation. This analysis resulted in the construction, purification, and characterization of four hIL-7 variants, hIL-7(K121A), hIL-7(L136A), hIL-7(K140A), and hIL-7(W143A), that displayed reduced or abrogated ability to stimulate a murine IL-7 dependent pre-B cell proliferation. The mutant hIL-7(W143A), which is biologically inactive and displaces [125I]-hIL-7, is the first reported IL-7R system antagonist.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alderson M. R., Tough T. W., Ziegler S. F., Grabstein K. H. Interleukin 7 induces cytokine secretion and tumoricidal activity by human peripheral blood monocytes. J Exp Med. 1991 Apr 1;173(4):923–930. doi: 10.1084/jem.173.4.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bajorath J., Stenkamp R., Aruffo A. Knowledge-based model building of proteins: concepts and examples. Protein Sci. 1993 Nov;2(11):1798–1810. doi: 10.1002/pro.5560021103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Banerjee A., Rothman P. IL-7 reconstitutes multiple aspects of v-Abl-mediated signaling. J Immunol. 1998 Nov 1;161(9):4611–4617. [PubMed] [Google Scholar]
- Barton V. A., Hudson K. R., Heath J. K. Identification of three distinct receptor binding sites of murine interleukin-11. J Biol Chem. 1999 Feb 26;274(9):5755–5761. doi: 10.1074/jbc.274.9.5755. [DOI] [PubMed] [Google Scholar]
- Bazan J. F. Haemopoietic receptors and helical cytokines. Immunol Today. 1990 Oct;11(10):350–354. doi: 10.1016/0167-5699(90)90139-z. [DOI] [PubMed] [Google Scholar]
- Bazan J. F. Structural design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci U S A. 1990 Sep;87(18):6934–6938. doi: 10.1073/pnas.87.18.6934. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
- Chazen G. D., Pereira G. M., LeGros G., Gillis S., Shevach E. M. Interleukin 7 is a T-cell growth factor. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5923–5927. doi: 10.1073/pnas.86.15.5923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen M., Cheng A., Chen Y. Q., Hymel A., Hanson E. P., Kimmel L., Minami Y., Taniguchi T., Changelian P. S., O'Shea J. J. The amino terminus of JAK3 is necessary and sufficient for binding to the common gamma chain and confers the ability to transmit interleukin 2-mediated signals. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6910–6915. doi: 10.1073/pnas.94.13.6910. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chou P. Y., Fasman G. D. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978;47:45–148. doi: 10.1002/9780470122921.ch2. [DOI] [PubMed] [Google Scholar]
- Cosenza L., Sweeney E., Murphy J. R. Disulfide bond assignment in human interleukin-7 by matrix-assisted laser desorption/ionization mass spectroscopy and site-directed cysteine to serine mutational analysis. J Biol Chem. 1997 Dec 26;272(52):32995–33000. doi: 10.1074/jbc.272.52.32995. [DOI] [PubMed] [Google Scholar]
- Damjanovich S., Bene L., Matkó J., Alileche A., Goldman C. K., Sharrow S., Waldmann T. A. Preassembly of interleukin 2 (IL-2) receptor subunits on resting Kit 225 K6 T cells and their modulation by IL-2, IL-7, and IL-15: a fluorescence resonance energy transfer study. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):13134–13139. doi: 10.1073/pnas.94.24.13134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Di Santo J. P., Kühn R., Müller W. Common cytokine receptor gamma chain (gamma c)-dependent cytokines: understanding in vivo functions by gene targeting. Immunol Rev. 1995 Dec;148:19–34. doi: 10.1111/j.1600-065x.1995.tb00091.x. [DOI] [PubMed] [Google Scholar]
- Garnier J., Osguthorpe D. J., Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol. 1978 Mar 25;120(1):97–120. doi: 10.1016/0022-2836(78)90297-8. [DOI] [PubMed] [Google Scholar]
- Goodwin R. G., Lupton S., Schmierer A., Hjerrild K. J., Jerzy R., Clevenger W., Gillis S., Cosman D., Namen A. E. Human interleukin 7: molecular cloning and growth factor activity on human and murine B-lineage cells. Proc Natl Acad Sci U S A. 1989 Jan;86(1):302–306. doi: 10.1073/pnas.86.1.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hage T., Sebald W., Reinemer P. Crystal structure of the interleukin-4/receptor alpha chain complex reveals a mosaic binding interface. Cell. 1999 Apr 16;97(2):271–281. doi: 10.1016/s0092-8674(00)80736-9. [DOI] [PubMed] [Google Scholar]
- Hansen M. B., Nielsen S. E., Berg K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods. 1989 May 12;119(2):203–210. doi: 10.1016/0022-1759(89)90397-9. [DOI] [PubMed] [Google Scholar]
- Hilbert D. M., Theisen P. W., Rudikoff E. K., Bauer S. R. Interaction of abl and raf with IL-7 signaling pathway and transformation of pre-B cells from resistant mice. Oncogene. 1998 Oct 22;17(16):2125–2135. doi: 10.1038/sj.onc.1202134. [DOI] [PubMed] [Google Scholar]
- Kroemer R. T., Doughty S. W., Robinson A. J., Richards W. G. Prediction of the three-dimensional structure of human interleukin-7 by homology modeling. Protein Eng. 1996 Jun;9(6):493–498. doi: 10.1093/protein/9.6.493. [DOI] [PubMed] [Google Scholar]
- Kruse N., Shen B. J., Arnold S., Tony H. P., Müller T., Sebald W. Two distinct functional sites of human interleukin 4 are identified by variants impaired in either receptor binding or receptor activation. EMBO J. 1993 Dec 15;12(13):5121–5129. doi: 10.1002/j.1460-2075.1993.tb06207.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kruse N., Tony H. P., Sebald W. Conversion of human interleukin-4 into a high affinity antagonist by a single amino acid replacement. EMBO J. 1992 Sep;11(9):3237–3244. doi: 10.1002/j.1460-2075.1992.tb05401.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Livnah O., Stura E. A., Middleton S. A., Johnson D. L., Jolliffe L. K., Wilson I. A. Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation. Science. 1999 Feb 12;283(5404):987–990. doi: 10.1126/science.283.5404.987. [DOI] [PubMed] [Google Scholar]
- Londei M., Verhoef A., Hawrylowicz C., Groves J., De Berardinis P., Feldmann M. Interleukin 7 is a growth factor for mature human T cells. Eur J Immunol. 1990 Feb;20(2):425–428. doi: 10.1002/eji.1830200228. [DOI] [PubMed] [Google Scholar]
- Lüthy R., Bowie J. U., Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature. 1992 Mar 5;356(6364):83–85. doi: 10.1038/356083a0. [DOI] [PubMed] [Google Scholar]
- Madrigal-Estebas L., McManus R., Byrne B., Lynch S., Doherty D. G., Kelleher D., O'Donoghue D. P., Feighery C., O'Farrelly C. Human small intestinal epithelial cells secrete interleukin-7 and differentially express two different interleukin-7 mRNA Transcripts: implications for extrathymic T-cell differentiation. Hum Immunol. 1997 Dec;58(2):83–90. doi: 10.1016/s0198-8859(97)00230-9. [DOI] [PubMed] [Google Scholar]
- Maeurer M. J., Lotze M. T. Interleukin-7 (IL-7) knockout mice. Implications for lymphopoiesis and organ-specific immunity. Int Rev Immunol. 1998;16(3-4):309–322. doi: 10.3109/08830189809042999. [DOI] [PubMed] [Google Scholar]
- Mertsching E., Meyer V., Linares J., Lombard-Platet S., Ceredig R. Interleukin-7, a non-redundant potent cytokine whose over-expression massively perturbs B-lymphopoiesis. Int Rev Immunol. 1998;16(3-4):285–308. doi: 10.3109/08830189809042998. [DOI] [PubMed] [Google Scholar]
- Mott H. R., Campbell I. D. Four-helix bundle growth factors and their receptors: protein-protein interactions. Curr Opin Struct Biol. 1995 Feb;5(1):114–121. doi: 10.1016/0959-440x(95)80016-t. [DOI] [PubMed] [Google Scholar]
- Murphy W. J., Back T. C., Conlon K. C., Komschlies K. L., Ortaldo J. R., Sayers T. J., Wiltrout R. H., Longo D. L. Antitumor effects of interleukin-7 and adoptive immunotherapy on human colon carcinoma xenografts. J Clin Invest. 1993 Oct;92(4):1918–1924. doi: 10.1172/JCI116785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Namen A. E., Lupton S., Hjerrild K., Wignall J., Mochizuki D. Y., Schmierer A., Mosley B., March C. J., Urdal D., Gillis S. Stimulation of B-cell progenitors by cloned murine interleukin-7. Nature. 1988 Jun 9;333(6173):571–573. doi: 10.1038/333571a0. [DOI] [PubMed] [Google Scholar]
- Parry D. A., Minasian E., Leach S. J. Cytokine conformations: predictive studies. J Mol Recognit. 1991 Mar-Jun;4(2-3):63–75. doi: 10.1002/jmr.300040205. [DOI] [PubMed] [Google Scholar]
- Stultz C. M., White J. V., Smith T. F. Structural analysis based on state-space modeling. Protein Sci. 1993 Mar;2(3):305–314. doi: 10.1002/pro.5560020302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walter M. R., Cook W. J., Ealick S. E., Nagabhushan T. L., Trotta P. P., Bugg C. E. Three-dimensional structure of recombinant human granulocyte-macrophage colony-stimulating factor. J Mol Biol. 1992 Apr 20;224(4):1075–1085. doi: 10.1016/0022-2836(92)90470-5. [DOI] [PubMed] [Google Scholar]
- Walter M. R., Cook W. J., Zhao B. G., Cameron R. P., Jr, Ealick S. E., Walter R. L., Jr, Reichert P., Nagabhushan T. L., Trotta P. P., Bugg C. E. Crystal structure of recombinant human interleukin-4. J Biol Chem. 1992 Oct 5;267(28):20371–20376. doi: 10.2210/pdb2int/pdb. [DOI] [PubMed] [Google Scholar]
- Wang H. M., Smith K. A. The interleukin 2 receptor. Functional consequences of its bimolecular structure. J Exp Med. 1987 Oct 1;166(4):1055–1069. doi: 10.1084/jem.166.4.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watanabe M., Ueno Y., Yajima T., Okamoto S., Hayashi T., Yamazaki M., Iwao Y., Ishii H., Habu S., Uehira M. Interleukin 7 transgenic mice develop chronic colitis with decreased interleukin 7 protein accumulation in the colonic mucosa. J Exp Med. 1998 Feb 2;187(3):389–402. doi: 10.1084/jem.187.3.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welch P. A., Namen A. E., Goodwin R. G., Armitage R., Cooper M. D. Human IL-7: a novel T cell growth factor. J Immunol. 1989 Dec 1;143(11):3562–3567. [PubMed] [Google Scholar]
- White J. V., Stultz C. M., Smith T. F. Protein classification by stochastic modeling and optimal filtering of amino-acid sequences. Math Biosci. 1994 Jan;119(1):35–75. doi: 10.1016/0025-5564(94)90004-3. [DOI] [PubMed] [Google Scholar]
- Williams I. R., Rawson E. A., Manning L., Karaoli T., Rich B. E., Kupper T. S. IL-7 overexpression in transgenic mouse keratinocytes causes a lymphoproliferative skin disease dominated by intermediate TCR cells: evidence for a hierarchy in IL-7 responsiveness among cutaneous T cells. J Immunol. 1997 Sep 15;159(6):3044–3056. [PubMed] [Google Scholar]
- Wlodawer A., Pavlovsky A., Gustchina A. Hematopoietic cytokines: similarities and differences in the structures, with implications for receptor binding. Protein Sci. 1993 Sep;2(9):1373–1382. doi: 10.1002/pro.5560020902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu L., White J. V., Smith T. F. A homology identification method that combines protein sequence and structure information. Protein Sci. 1998 Dec;7(12):2499–2510. doi: 10.1002/pro.5560071203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Vos A. M., Ultsch M., Kossiakoff A. A. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science. 1992 Jan 17;255(5042):306–312. doi: 10.1126/science.1549776. [DOI] [PubMed] [Google Scholar]