Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 May;9(5):956–963. doi: 10.1110/ps.9.5.956

Crystal structure of the antibiotic albomycin in complex with the outer membrane transporter FhuA.

A D Ferguson 1, V Braun 1, H P Fiedler 1, J W Coulton 1, K Diederichs 1, W Welte 1
PMCID: PMC2144648  PMID: 10850805

Abstract

One alternative method for drug delivery involves the use of siderophore-antibiotic conjugates. These compounds represent a specific means by which potent antimicrobial agents, covalently linked to iron-chelating siderophores, can be actively transported across the outer membrane of gram-negative bacteria. These "Trojan Horse" antibiotics may prove useful as an efficient means to combat multi-drug-resistant bacterial infections. Here we present the crystallographic structures of the natural siderophore-antibiotic conjugate albomycin and the siderophore phenylferricrocin, in complex with the active outer membrane transporter FhuA from Escherichia coli. To our knowledge, this represents the first structure of an antibiotic bound to its cognate transporter. Albomycins are broad-host range antibiotics that consist of a hydroxamate-type iron-chelating siderophore, and an antibiotically active, thioribosyl pyrimidine moiety. As observed with other hydroxamate-type siderophores, the three-dimensional structure of albomycin reveals an identical coordination geometry surrounding the ferric iron atom. Unexpectedly, this antibiotic assumes two conformational isomers in the binding site of FhuA, an extended and a compact form. The structural information derived from this study provides novel insights into the diverse array of antibiotic moieties that can be linked to the distal portion of iron-chelating siderophores and offers a structural platform for the rational design of hydroxamate-type siderophore-antibiotic conjugates.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Braun V. Energy-coupled transport and signal transduction through the gram-negative outer membrane via TonB-ExbB-ExbD-dependent receptor proteins. FEMS Microbiol Rev. 1995 Jul;16(4):295–307. doi: 10.1111/j.1574-6976.1995.tb00177.x. [DOI] [PubMed] [Google Scholar]
  2. Braun V., Günthner K., Hantke K., Zimmermann L. Intracellular activation of albomycin in Escherichia coli and Salmonella typhimurium. J Bacteriol. 1983 Oct;156(1):308–315. doi: 10.1128/jb.156.1.308-315.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Braun V., Hantke K., Köster W. Bacterial iron transport: mechanisms, genetics, and regulation. Met Ions Biol Syst. 1998;35:67–145. [PubMed] [Google Scholar]
  4. Brochu A., Brochu N., Nicas T. I., Parr T. R., Jr, Minnick A. A., Jr, Dolence E. K., McKee J. A., Miller M. J., Lavoie M. C., Malouin F. Modes of action and inhibitory activities of new siderophore-beta-lactam conjugates that use specific iron uptake pathways for entry into bacteria. Antimicrob Agents Chemother. 1992 Oct;36(10):2166–2175. doi: 10.1128/aac.36.10.2166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brünger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M., Pannu N. S. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905–921. doi: 10.1107/s0907444998003254. [DOI] [PubMed] [Google Scholar]
  6. Diarra M. S., Lavoie M. C., Jacques M., Darwish I., Dolence E. K., Dolence J. A., Ghosh A., Ghosh M., Miller M. J., Malouin F. Species selectivity of new siderophore-drug conjugates that use specific iron uptake for entry into bacteria. Antimicrob Agents Chemother. 1996 Nov;40(11):2610–2617. doi: 10.1128/aac.40.11.2610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ferguson A. D., Breed J., Diederichs K., Welte W., Coulton J. W. An internal affinity-tag for purification and crystallization of the siderophore receptor FhuA, integral outer membrane protein from Escherichia coli K-12. Protein Sci. 1998 Jul;7(7):1636–1638. doi: 10.1002/pro.5560070719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ferguson A. D., Hofmann E., Coulton J. W., Diederichs K., Welte W. Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science. 1998 Dec 18;282(5397):2215–2220. doi: 10.1126/science.282.5397.2215. [DOI] [PubMed] [Google Scholar]
  9. Ghosh A., Ghosh M., Niu C., Malouin F., Moellmann U., Miller M. J. Iron transport-mediated drug delivery using mixed-ligand siderophore-beta-lactam conjugates. Chem Biol. 1996 Dec;3(12):1011–1019. doi: 10.1016/s1074-5521(96)90167-2. [DOI] [PubMed] [Google Scholar]
  10. Hartmann A., Fiedler H. P., Braun V. Uptake and conversion of the antibiotic albomycin by Escherichia coli K-12. Eur J Biochem. 1979 Sep;99(3):517–524. doi: 10.1111/j.1432-1033.1979.tb13283.x. [DOI] [PubMed] [Google Scholar]
  11. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  12. Jurkevitch E., Hadar Y., Chen Y., Libman J., Shanzer A. Iron uptake and molecular recognition in Pseudomonas putida: receptor mapping with ferrichrome and its biomimetic analogs. J Bacteriol. 1992 Jan;174(1):78–83. doi: 10.1128/jb.174.1.78-83.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kadner R. J., Heller K., Coulton J. W., Braun V. Genetic control of hydroxamate-mediated iron uptake in Escherichia coli. J Bacteriol. 1980 Jul;143(1):256–264. doi: 10.1128/jb.143.1.256-264.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Killmann H., Herrmann C., Wolff H., Braun V. Identification of a new site for ferrichrome transport by comparison of the FhuA proteins of Escherichia coli, Salmonella paratyphi B, Salmonella typhimurium, and Pantoea agglomerans. J Bacteriol. 1998 Aug;180(15):3845–3852. doi: 10.1128/jb.180.15.3845-3852.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Koebnik R., Braun V. Insertion derivatives containing segments of up to 16 amino acids identify surface- and periplasm-exposed regions of the FhuA outer membrane receptor of Escherichia coli K-12. J Bacteriol. 1993 Feb;175(3):826–839. doi: 10.1128/jb.175.3.826-839.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Locher K. P., Rees B., Koebnik R., Mitschler A., Moulinier L., Rosenbusch J. P., Moras D. Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes. Cell. 1998 Dec 11;95(6):771–778. doi: 10.1016/s0092-8674(00)81700-6. [DOI] [PubMed] [Google Scholar]
  17. Martínez J. L., Delgado-Iribarren A., Baquero F. Mechanisms of iron acquisition and bacterial virulence. FEMS Microbiol Rev. 1990 Mar;6(1):45–56. doi: 10.1111/j.1574-6968.1990.tb04085.x. [DOI] [PubMed] [Google Scholar]
  18. Minnick A. A., McKee J. A., Dolence E. K., Miller M. J. Iron transport-mediated antibacterial activity of and development of resistance to hydroxamate and catechol siderophore-carbacephalosporin conjugates. Antimicrob Agents Chemother. 1992 Apr;36(4):840–850. doi: 10.1128/aac.36.4.840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Moeck G. S., Bazzaz B. S., Gras M. F., Ravi T. S., Ratcliffe M. J., Coulton J. W. Genetic insertion and exposure of a reporter epitope in the ferrichrome-iron receptor of Escherichia coli K-12. J Bacteriol. 1994 Jul;176(14):4250–4259. doi: 10.1128/jb.176.14.4250-4259.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Moeck G. S., Coulton J. W. TonB-dependent iron acquisition: mechanisms of siderophore-mediated active transport. Mol Microbiol. 1998 May;28(4):675–681. doi: 10.1046/j.1365-2958.1998.00817.x. [DOI] [PubMed] [Google Scholar]
  21. Moeck G. S., Tawa P., Xiang H., Ismail A. A., Turnbull J. L., Coulton J. W. Ligand-induced conformational change in the ferrichrome-iron receptor of Escherichia coli K-12. Mol Microbiol. 1996 Nov;22(3):459–471. doi: 10.1046/j.1365-2958.1996.00112.x. [DOI] [PubMed] [Google Scholar]
  22. Neilands J. B. Siderophores: structure and function of microbial iron transport compounds. J Biol Chem. 1995 Nov 10;270(45):26723–26726. doi: 10.1074/jbc.270.45.26723. [DOI] [PubMed] [Google Scholar]
  23. Pugsley A. P., Zimmerman W., Wehrli W. Highly efficient uptake of a rifamycin derivative via the FhuA-TonB-dependent uptake route in Escherichia coli. J Gen Microbiol. 1987 Dec;133(12):3505–3511. doi: 10.1099/00221287-133-12-3505. [DOI] [PubMed] [Google Scholar]
  24. Rohrbach M. R., Braun V., Köster W. Ferrichrome transport in Escherichia coli K-12: altered substrate specificity of mutated periplasmic FhuD and interaction of FhuD with the integral membrane protein FhuB. J Bacteriol. 1995 Dec;177(24):7186–7193. doi: 10.1128/jb.177.24.7186-7193.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Roosenberg J. M., 2nd, Lin Y. M., Lu Y., Miller M. J. Studies and syntheses of siderophores, microbial iron chelators, and analogs as potential drug delivery agents. Curr Med Chem. 2000 Feb;7(2):159–197. doi: 10.2174/0929867003375353. [DOI] [PubMed] [Google Scholar]
  26. Schultz-Hauser G., Köster W., Schwarz H., Braun V. Iron(III) hydroxamate transport in Escherichia coli K-12: FhuB-mediated membrane association of the FhuC protein and negative complementation of fhuC mutants. J Bacteriol. 1992 Apr;174(7):2305–2311. doi: 10.1128/jb.174.7.2305-2311.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES