Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Jun;9(6):1120–1128. doi: 10.1110/ps.9.6.1120

Tumor suppressor INK4: refinement of p16INK4A structure and determination of p15INK4B structure by comparative modeling and NMR data.

C Yuan 1, T L Selby 1, J Li 1, I J Byeon 1, M D Tsai 1
PMCID: PMC2144649  PMID: 10892805

Abstract

Within the tumor suppressor protein INK4 (inhibitor of cyclin-dependent kinase 4) family, p15INK4B is the smallest and the only one whose structure has not been determined previously, probably due to the protein's conformational flexibility and instability. In this work, multidimensional NMR studies were performed on this protein. The first tertiary structure was built by comparative modeling with p16INK4A as the template, followed by restrained energy minimization with NMR constraints (NOE and H-bonds). For this purpose, the solution structure of pl6INK4A, whose quality was also limited by similar problems, was refined with additional NMR experiments conducted on an 800 MHz spectrometer and by structure-based iterative NOE assignments. The nonhelical regions showed major improvement with root-mean-square deviation (RMSD) improved from 1.23 to 0.68 A for backbone heavy atoms. The completion of p15INK4B coupled with refinement of p16INK4A made it possible to compare the structures of the four INK4 members in depth, and to compare the structures of p16INK4A in the free form and in the p16INK4A-CDK6 complex. This is an important step toward a comprehensive understanding of the precise functional roles of each INK4 member.

Full Text

The Full Text of this article is available as a PDF (941.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baumgartner R., Fernandez-Catalan C., Winoto A., Huber R., Engh R. A., Holak T. A. Structure of human cyclin-dependent kinase inhibitor p19INK4d: comparison to known ankyrin-repeat-containing structures and implications for the dysfunction of tumor suppressor p16INK4a. Structure. 1998 Oct 15;6(10):1279–1290. doi: 10.1016/s0969-2126(98)00128-2. [DOI] [PubMed] [Google Scholar]
  2. Brotherton D. H., Dhanaraj V., Wick S., Brizuela L., Domaille P. J., Volyanik E., Xu X., Parisini E., Smith B. O., Archer S. J. Crystal structure of the complex of the cyclin D-dependent kinase Cdk6 bound to the cell-cycle inhibitor p19INK4d. Nature. 1998 Sep 17;395(6699):244–250. doi: 10.1038/26164. [DOI] [PubMed] [Google Scholar]
  3. Byeon I. J., Li J., Ericson K., Selby T. L., Tevelev A., Kim H. J., O'Maille P., Tsai M. D. Tumor suppressor p16INK4A: determination of solution structure and analyses of its interaction with cyclin-dependent kinase 4. Mol Cell. 1998 Feb;1(3):421–431. doi: 10.1016/s1097-2765(00)80042-8. [DOI] [PubMed] [Google Scholar]
  4. Farmer B. T., 2nd, Constantine K. L., Goldfarb V., Friedrichs M. S., Wittekind M., Yanchunas J., Jr, Robertson J. G., Mueller L. Localizing the NADP+ binding site on the MurB enzyme by NMR. Nat Struct Biol. 1996 Dec;3(12):995–997. doi: 10.1038/nsb1296-995. [DOI] [PubMed] [Google Scholar]
  5. Gemma A., Takenoshita S., Hagiwara K., Okamoto A., Spillare E. A., McMemamin M. G., Hussain S. P., Forrester K., Zariwala M., Xiong Y. Molecular analysis of the cyclin-dependent kinase inhibitor genes p15INK4b/MTS2, p16INK4/MTS1, p18 and p19 in human cancer cell lines. Int J Cancer. 1996 Nov 27;68(5):605–611. doi: 10.1002/(SICI)1097-0215(19961127)68:5<605::AID-IJC9>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  6. Glendening J. M., Flores J. F., Walker G. J., Stone S., Albino A. P., Fountain J. W. Homozygous loss of the p15INK4B gene (and not the p16INK4 gene) during tumor progression in a sporadic melanoma patient. Cancer Res. 1995 Dec 1;55(23):5531–5535. [PubMed] [Google Scholar]
  7. Guan K. L., Jenkins C. W., Li Y., Nichols M. A., Wu X., O'Keefe C. L., Matera A. G., Xiong Y. Growth suppression by p18, a p16INK4/MTS1- and p14INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. Genes Dev. 1994 Dec 15;8(24):2939–2952. doi: 10.1101/gad.8.24.2939. [DOI] [PubMed] [Google Scholar]
  8. Guan K. L., Jenkins C. W., Li Y., O'Keefe C. L., Noh S., Wu X., Zariwala M., Matera A. G., Xiong Y. Isolation and characterization of p19INK4d, a p16-related inhibitor specific to CDK6 and CDK4. Mol Biol Cell. 1996 Jan;7(1):57–70. doi: 10.1091/mbc.7.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hamada K., Kohno T., Kawanishi M., Ohwada S., Yokota J. Association of CDKN2A(p16)/CDKN2B(p15) alterations and homozygous chromosome arm 9p deletions in human lung carcinoma. Genes Chromosomes Cancer. 1998 Jul;22(3):232–240. doi: 10.1002/(sici)1098-2264(199807)22:3<232::aid-gcc9>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]
  10. Hannon G. J., Beach D. p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature. 1994 Sep 15;371(6494):257–261. doi: 10.1038/371257a0. [DOI] [PubMed] [Google Scholar]
  11. Iolascon A., Faienza M. F., Coppola B., Rosolen A., Basso G., Della Ragione F., Schettini F. Analysis of cyclin-dependent kinase inhibitor genes (CDKN2A, CDKN2B, and CDKN2C) in childhood rhabdomyosarcoma. Genes Chromosomes Cancer. 1996 Apr;15(4):217–222. doi: 10.1002/(SICI)1098-2264(199604)15:4<217::AID-GCC3>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  12. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  13. Li J., Byeon I. J., Ericson K., Poi M. J., O'Maille P., Selby T., Tsai M. D. Tumor suppressor INK4: determination of the solution structure of p18INK4C and demonstration of the functional significance of loops in p18INK4C and p16INK4A. Biochemistry. 1999 Mar 9;38(10):2930–2940. doi: 10.1021/bi982286e. [DOI] [PubMed] [Google Scholar]
  14. Luh F. Y., Archer S. J., Domaille P. J., Smith B. O., Owen D., Brotherton D. H., Raine A. R., Xu X., Brizuela L., Brenner S. L. Structure of the cyclin-dependent kinase inhibitor p19Ink4d. Nature. 1997 Oct 30;389(6654):999–1003. doi: 10.1038/40202. [DOI] [PubMed] [Google Scholar]
  15. MacKie R. M., Andrew N., Lanyon W. G., Connor J. M. CDKN2A germline mutations in U.K. patients with familial melanoma and multiple primary melanomas. J Invest Dermatol. 1998 Aug;111(2):269–272. doi: 10.1046/j.1523-1747.1998.00267.x. [DOI] [PubMed] [Google Scholar]
  16. Malumbres M., Pérez de Castro I., Santos J., Meléndez B., Mangues R., Serrano M., Pellicer A., Fernández-Piqueras J. Inactivation of the cyclin-dependent kinase inhibitor p15INK4b by deletion and de novo methylation with independence of p16INK4a alterations in murine primary T-cell lymphomas. Oncogene. 1997 Mar 20;14(11):1361–1370. doi: 10.1038/sj.onc.1200969. [DOI] [PubMed] [Google Scholar]
  17. Nilges M., Clore G. M., Gronenborn A. M. Determination of three-dimensional structures of proteins from interproton distance data by dynamical simulated annealing from a random array of atoms. Circumventing problems associated with folding. FEBS Lett. 1988 Oct 24;239(1):129–136. doi: 10.1016/0014-5793(88)80559-3. [DOI] [PubMed] [Google Scholar]
  18. Nilges M. Structure calculation from NMR data. Curr Opin Struct Biol. 1996 Oct;6(5):617–623. doi: 10.1016/s0959-440x(96)80027-3. [DOI] [PubMed] [Google Scholar]
  19. Noh S. J., Li Y., Xiong Y., Guan K. L. Identification of functional elements of p18INK4C essential for binding and inhibition of cyclin-dependent kinase (CDK) 4 and CDK6. Cancer Res. 1999 Feb 1;59(3):558–564. [PubMed] [Google Scholar]
  20. Pinyol M., Cobo F., Bea S., Jares P., Nayach I., Fernandez P. L., Montserrat E., Cardesa A., Campo E. p16(INK4a) gene inactivation by deletions, mutations, and hypermethylation is associated with transformed and aggressive variants of non-Hodgkin's lymphomas. Blood. 1998 Apr 15;91(8):2977–2984. [PubMed] [Google Scholar]
  21. Russo A. A., Tong L., Lee J. O., Jeffrey P. D., Pavletich N. P. Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16INK4a. Nature. 1998 Sep 17;395(6699):237–243. doi: 10.1038/26155. [DOI] [PubMed] [Google Scholar]
  22. Sali A., Blundell T. L. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993 Dec 5;234(3):779–815. doi: 10.1006/jmbi.1993.1626. [DOI] [PubMed] [Google Scholar]
  23. Sali A., Potterton L., Yuan F., van Vlijmen H., Karplus M. Evaluation of comparative protein modeling by MODELLER. Proteins. 1995 Nov;23(3):318–326. doi: 10.1002/prot.340230306. [DOI] [PubMed] [Google Scholar]
  24. Schoonman M. J., Knegtel R. M., Grootenhuis P. D. Practical evaluation of comparative modelling and threading methods. Comput Chem. 1998 Sep 30;22(5):369–375. doi: 10.1016/s0097-8485(98)00006-0. [DOI] [PubMed] [Google Scholar]
  25. Sedgwick S. G., Smerdon S. J. The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem Sci. 1999 Aug;24(8):311–316. doi: 10.1016/s0968-0004(99)01426-7. [DOI] [PubMed] [Google Scholar]
  26. Serrano M., Hannon G. J., Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature. 1993 Dec 16;366(6456):704–707. doi: 10.1038/366704a0. [DOI] [PubMed] [Google Scholar]
  27. Sherr C. J. Cancer cell cycles. Science. 1996 Dec 6;274(5293):1672–1677. doi: 10.1126/science.274.5293.1672. [DOI] [PubMed] [Google Scholar]
  28. Sánchez R., Sali A. Advances in comparative protein-structure modelling. Curr Opin Struct Biol. 1997 Apr;7(2):206–214. doi: 10.1016/s0959-440x(97)80027-9. [DOI] [PubMed] [Google Scholar]
  29. Tevelev A., Byeon I. J., Selby T., Ericson K., Kim H. J., Kraynov V., Tsai M. D. Tumor suppressor p16INK4A: structural characterization of wild-type and mutant proteins by NMR and circular dichroism. Biochemistry. 1996 Jul 23;35(29):9475–9487. doi: 10.1021/bi960211+. [DOI] [PubMed] [Google Scholar]
  30. Tsutsumi M., Tsai Y. C., Gonzalgo M. L., Nichols P. W., Jones P. A. Early acquisition of homozygous deletions of p16/p19 during squamous cell carcinogenesis and genetic mosaicism in bladder cancer. Oncogene. 1998 Dec 10;17(23):3021–3027. doi: 10.1038/sj.onc.1202228. [DOI] [PubMed] [Google Scholar]
  31. Venkataramani R., Swaminathan K., Marmorstein R. Crystal structure of the CDK4/6 inhibitory protein p18INK4c provides insights into ankyrin-like repeat structure/function and tumor-derived p16INK4 mutations. Nat Struct Biol. 1998 Jan;5(1):74–81. doi: 10.1038/nsb0198-74. [DOI] [PubMed] [Google Scholar]
  32. Yuan C., Li J., Selby T. L., Byeon I. J., Tsai M. D. Tumor suppressor INK4: comparisons of conformational properties between p16(INK4A) and p18(INK4C). J Mol Biol. 1999 Nov 19;294(1):201–211. doi: 10.1006/jmbi.1999.3231. [DOI] [PubMed] [Google Scholar]
  33. Zindy F., Soares H., Herzog K. H., Morgan J., Sherr C. J., Roussel M. F. Expression of INK4 inhibitors of cyclin D-dependent kinases during mouse brain development. Cell Growth Differ. 1997 Nov;8(11):1139–1150. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES