Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Jun;9(6):1053–1062. doi: 10.1110/ps.9.6.1053

Stereoselectivity of Pseudomonas cepacia lipase toward secondary alcohols: a quantitative model.

T Schulz 1, J Pleiss 1, R D Schmid 1
PMCID: PMC2144656  PMID: 10892799

Abstract

The lipase from Pseudomonas cepacia represents a widely applied catalyst for highly enantioselective resolution of chiral secondary alcohols. While its stereopreference is determined predominantly by the substrate structure, stereoselectivity depends on atomic details of interactions between substrate and lipase. Thirty secondary alcohols with published E values using P. cepacia lipase in hydrolysis or esterification reactions were selected, and models of their octanoic acid esters were docked to the open conformation of P. cepacia lipase. The two enantiomers of 27 substrates bound preferentially in either of two binding modes: the fast-reacting enantiomer in a productive mode and the slow-reacting enantiomer in a nonproductive mode. Nonproductive mode of fast-reacting enantiomers was prohibited by repulsive interactions. For the slow-reacting enantiomers in the productive binding mode, the substrate pushes the active site histidine away from its proper orientation, and the distance d(H(N epsilon) - O(alc)) between the histidine side chain and the alcohol oxygen increases, d(H(N epsilon) - O(alc)) was correlated to experimentally observed enantioselectivity: in substrates for which P. cepacia lipase has high enantioselectivity (E > 100), d(H(N epsilon) - O(alc)) is >2.2 A for slow-reacting enantiomers, thus preventing efficient catalysis of this enantiomer. In substrates of low enantioselectivity (E < 20), the distance d(H(N epsilon) - O(alc)) is less than 2.0 A, and slow- and fast-reacting enantiomers are catalyzed at similar rates. For substrates of medium enantioselectivity (20 < E < 100), d(H(N epsilon) - O(alc)) is around 2.1 A. This simple model can be applied to predict enantioselectivity of P. cepacia lipase toward a broad range of secondary alcohols.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  2. Chapus C., Sémériva M., Bovier-Lapierre C., Desnuelle P. Mechanism of pancreatic lipase action. 1. Interfacial activation of pancreatic lipase. Biochemistry. 1976 Nov 16;15(23):4980–4987. doi: 10.1021/bi00668a006. [DOI] [PubMed] [Google Scholar]
  3. Chapus C., Sémériva M. Mechanism of pancreatic lipase action. 2. Catalytic properties of modified lipases. Biochemistry. 1976 Nov 16;15(23):4988–4991. doi: 10.1021/bi00668a007. [DOI] [PubMed] [Google Scholar]
  4. DeTar D. F. Computation of enzyme-substrate specificity. Biochemistry. 1981 Mar 31;20(7):1730–1743. doi: 10.1021/bi00510a005. [DOI] [PubMed] [Google Scholar]
  5. Haeffner F., Norin T., Hult K. Molecular modeling of the enantioselectivity in lipase-catalyzed transesterification reactions. Biophys J. 1998 Mar;74(3):1251–1262. doi: 10.1016/S0006-3495(98)77839-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kazlauskas R. J. Elucidating structure-mechanism relationships in lipases: prospects for predicting and engineering catalytic properties. Trends Biotechnol. 1994 Nov;12(11):464–472. doi: 10.1016/0167-7799(94)90022-1. [DOI] [PubMed] [Google Scholar]
  7. Lang D. A., Mannesse M. L., de Haas G. H., Verheij H. M., Dijkstra B. W. Structural basis of the chiral selectivity of Pseudomonas cepacia lipase. Eur J Biochem. 1998 Jun 1;254(2):333–340. doi: 10.1046/j.1432-1327.1998.2540333.x. [DOI] [PubMed] [Google Scholar]
  8. Norin M., Haeffner F., Achour A., Norin T., Hult K. Computer modeling of substrate binding to lipases from Rhizomucor miehei, Humicola lanuginosa, and Candida rugosa. Protein Sci. 1994 Sep;3(9):1493–1503. doi: 10.1002/pro.5560030915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Orrenius C., van Heusden C., van Ruiten J., Overbeeke P. L., Kierkels H., Duine J. A., Jongejan J. A. Simple conformation space search protocols for the evaluation of enantioselectivity of lipases. Protein Eng. 1998 Dec;11(12):1147–1153. doi: 10.1093/protein/11.12.1147. [DOI] [PubMed] [Google Scholar]
  10. Rarey M., Kramer B., Lengauer T., Klebe G. A fast flexible docking method using an incremental construction algorithm. J Mol Biol. 1996 Aug 23;261(3):470–489. doi: 10.1006/jmbi.1996.0477. [DOI] [PubMed] [Google Scholar]
  11. Scheib H., Pleiss J., Kovac A., Paltauf F., Schmid R. D. Stereoselectivity of Mucorales lipases toward triradylglycerols--a simple solution to a complex problem. Protein Sci. 1999 Jan;8(1):215–221. doi: 10.1110/ps.8.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Scheib H., Pleiss J., Stadler P., Kovac A., Potthoff A. P., Haalck L., Spener F., Paltauf F., Schmid R. D. Rational design of Rhizopus oryzae lipase with modified stereoselectivity toward triradylglycerols. Protein Eng. 1998 Aug;11(8):675–682. doi: 10.1093/protein/11.8.675. [DOI] [PubMed] [Google Scholar]
  13. Schrag J. D., Li Y., Cygler M., Lang D., Burgdorf T., Hecht H. J., Schmid R., Schomburg D., Rydel T. J., Oliver J. D. The open conformation of a Pseudomonas lipase. Structure. 1997 Feb 15;5(2):187–202. doi: 10.1016/s0969-2126(97)00178-0. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES