Abstract
The amino terminal domain of enzyme I (residues 1-258 + Arg; EIN) and full length enzyme I (575 residues; EI) harboring active-site mutations (H189E, expected to have properties of phosphorylated forms, and H189A) have been produced by protein bioengineering. Differential scanning calorimetry (DSC) and temperature-induced changes in ellipticity at 222 nm for monomeric wild-type and mutant EIN proteins indicate two-state unfolding. For EIN proteins in 10 mM K-phosphate (and 100 mM KCl) at pH 7.5, deltaH approximately 140 +/- 10 (160) kcal mol(-1) and deltaCp approximately 2.7 (3.3) kcal K(-1) mol(-1). Transition temperatures (Tm) are 57 (59), 55 (58), and 53 (56) degrees C for wild-type, H189A, and H189E forms of EIN, respectively. The order of conformational stability for dephospho-His189, phospho-His189, and H189 substitutions of EIN at pH 7.5 is: His > Ala > Glu > His-PO3(2-) due to differences in conformational entropy. Although H189E mutants have decreased Tm values for overall unfolding the amino terminal domain, a small segment of structure (3 to 12%) is stabilized (Tm approximately 66-68 degrees C). This possibly arises from an ion pair interaction between the gamma-carboxyl of Glu189 and the epsilon-amino group of Lys69 in the docking region for the histidine-containing phosphocarrier protein HPr. However, the binding of HPr to wild-type and active-site mutants of EIN and EI is temperature-independent (entropically controlled) with about the same affinity constant at pH 7.5: K(A)' = 3 +/- 1 x 10(5) M(-1) for EIN and approximately 1.2 x 10(5) M(-1) for EI.
Full Text
The Full Text of this article is available as a PDF (1.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Becktel W. J., Schellman J. A. Protein stability curves. Biopolymers. 1987 Nov;26(11):1859–1877. doi: 10.1002/bip.360261104. [DOI] [PubMed] [Google Scholar]
- Brandts J. F., Hu C. Q., Lin L. N., Mos M. T. A simple model for proteins with interacting domains. Applications to scanning calorimetry data. Biochemistry. 1989 Oct 17;28(21):8588–8596. doi: 10.1021/bi00447a048. [DOI] [PubMed] [Google Scholar]
- Chauvin F., Fomenkov A., Johnson C. R., Roseman S. The N-terminal domain of Escherichia coli enzyme I of the phosphoenolpyruvate/glycose phosphotransferase system: molecular cloning and characterization. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7028–7031. doi: 10.1073/pnas.93.14.7028. [DOI] [PMC free article] [PubMed] [Google Scholar]
- D'Aquino J. A., Gómez J., Hilser V. J., Lee K. H., Amzel L. M., Freire E. The magnitude of the backbone conformational entropy change in protein folding. Proteins. 1996 Jun;25(2):143–156. doi: 10.1002/(SICI)1097-0134(199606)25:2<143::AID-PROT1>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
- Garrett D. S., Seok Y. J., Liao D. I., Peterkofsky A., Gronenborn A. M., Clore G. M. Solution structure of the 30 kDa N-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system by multidimensional NMR. Biochemistry. 1997 Mar 4;36(9):2517–2530. doi: 10.1021/bi962924y. [DOI] [PubMed] [Google Scholar]
- Garrett D. S., Seok Y. J., Peterkofsky A., Clore G. M., Gronenborn A. M. Identification by NMR of the binding surface for the histidine-containing phosphocarrier protein HPr on the N-terminal domain of enzyme I of the Escherichia coli phosphotransferase system. Biochemistry. 1997 Apr 15;36(15):4393–4398. doi: 10.1021/bi970221q. [DOI] [PubMed] [Google Scholar]
- Garrett D. S., Seok Y. J., Peterkofsky A., Clore G. M., Gronenborn A. M. Tautomeric state and pKa of the phosphorylated active site histidine in the N-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system. Protein Sci. 1998 Mar;7(3):789–793. doi: 10.1002/pro.5560070329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garrett D. S., Seok Y. J., Peterkofsky A., Gronenborn A. M., Clore G. M. Solution structure of the 40,000 Mr phosphoryl transfer complex between the N-terminal domain of enzyme I and HPr. Nat Struct Biol. 1999 Feb;6(2):166–173. doi: 10.1038/5854. [DOI] [PubMed] [Google Scholar]
- Ginsburg A., Zolkiewski M. Differential scanning calorimetry study of reversible, partial unfolding transitions in dodecameric glutamine synthetase from Escherichia coli. Biochemistry. 1991 Oct 1;30(39):9421–9429. doi: 10.1021/bi00103a005. [DOI] [PubMed] [Google Scholar]
- Hilser V. J., Gómez J., Freire E. The enthalpy change in protein folding and binding: refinement of parameters for structure-based calculations. Proteins. 1996 Oct;26(2):123–133. doi: 10.1002/(SICI)1097-0134(199610)26:2<123::AID-PROT2>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
- Huffine M. E., Scholtz J. M. Energetic implications for protein phosphorylation. Conformational stability of HPr variants that mimic phosphorylated forms. J Biol Chem. 1996 Nov 15;271(46):28898–28902. doi: 10.1074/jbc.271.46.28898. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- LiCalsi C., Crocenzi T. S., Freire E., Roseman S. Sugar transport by the bacterial phosphotransferase system. Structural and thermodynamic domains of enzyme I of Salmonella typhimurium. J Biol Chem. 1991 Oct 15;266(29):19519–19527. [PubMed] [Google Scholar]
- Liao D. I., Silverton E., Seok Y. J., Lee B. R., Peterkofsky A., Davies D. R. The first step in sugar transport: crystal structure of the amino terminal domain of enzyme I of the E. coli PEP: sugar phosphotransferase system and a model of the phosphotransfer complex with HPr. Structure. 1996 Jul 15;4(7):861–872. doi: 10.1016/s0969-2126(96)00092-5. [DOI] [PubMed] [Google Scholar]
- Makhatadze G. I., Privalov P. L. Hydration effects in protein unfolding. Biophys Chem. 1994 Aug;51(2-3):291–309. doi: 10.1016/0301-4622(94)00050-6. [DOI] [PubMed] [Google Scholar]
- Meadow N. D., Fox D. K., Roseman S. The bacterial phosphoenolpyruvate: glycose phosphotransferase system. Annu Rev Biochem. 1990;59:497–542. doi: 10.1146/annurev.bi.59.070190.002433. [DOI] [PubMed] [Google Scholar]
- Nosworthy N. J., Peterkofsky A., König S., Seok Y. J., Szczepanowski R. H., Ginsburg A. Phosphorylation destabilizes the amino-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system. Biochemistry. 1998 May 12;37(19):6718–6726. doi: 10.1021/bi980126x. [DOI] [PubMed] [Google Scholar]
- Plotnikov V. V., Brandts J. M., Lin L. N., Brandts J. F. A new ultrasensitive scanning calorimeter. Anal Biochem. 1997 Aug 1;250(2):237–244. doi: 10.1006/abio.1997.2236. [DOI] [PubMed] [Google Scholar]
- Privalov G., Kavina V., Freire E., Privalov P. L. Precise scanning calorimeter for studying thermal properties of biological macromolecules in dilute solution. Anal Biochem. 1995 Nov 20;232(1):79–85. doi: 10.1006/abio.1995.9957. [DOI] [PubMed] [Google Scholar]
- Rajagopal P., Waygood E. B., Klevit R. E. Structural consequences of histidine phosphorylation: NMR characterization of the phosphohistidine form of histidine-containing protein from Bacillus subtilis and Escherichia coli. Biochemistry. 1994 Dec 27;33(51):15271–15282. doi: 10.1021/bi00255a008. [DOI] [PubMed] [Google Scholar]
- Reddy P., Fredd-Kuldell N., Liberman E., Peterkofsky A. Overproduction and rapid purification of the phosphoenolpyruvate:sugar phosphotransferase system proteins enzyme I, HPr, and Protein IIIGlc of Escherichia coli. Protein Expr Purif. 1991 Apr-Jun;2(2-3):179–187. doi: 10.1016/1046-5928(91)90069-u. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seok Y. J., Lee B. R., Zhu P. P., Peterkofsky A. Importance of the carboxyl-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate: sugar phosphotransferase system for phosphoryl donor specificity. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):347–351. doi: 10.1073/pnas.93.1.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WADDELL W. J. A simple ultraviolet spectrophotometric method for the determination of protein. J Lab Clin Med. 1956 Aug;48(2):311–314. [PubMed] [Google Scholar]
- Waygood E. B. Enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system has two sites of phosphorylation per dimer. Biochemistry. 1986 Jul 15;25(14):4085–4090. doi: 10.1021/bi00362a015. [DOI] [PubMed] [Google Scholar]
- Zhu P. P., Szczepanowski R. H., Nosworthy N. J., Ginsburg A., Peterkofsky A. Reconstitution studies using the helical and carboxy-terminal domains of enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system. Biochemistry. 1999 Nov 23;38(47):15470–15479. doi: 10.1021/bi991680p. [DOI] [PubMed] [Google Scholar]
- van Nuland N. A., Boelens R., Scheek R. M., Robillard G. T. High-resolution structure of the phosphorylated form of the histidine-containing phosphocarrier protein HPr from Escherichia coli determined by restrained molecular dynamics from NMR-NOE data. J Mol Biol. 1995 Feb 10;246(1):180–193. doi: 10.1006/jmbi.1994.0075. [DOI] [PubMed] [Google Scholar]