Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Jun;9(6):1085–1094. doi: 10.1110/ps.9.6.1085

Conformational stability changes of the amino terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate: sugar phosphotransferase system produced by substituting alanine or glutamate for the active-site histidine 189: implications for phosphorylation effects.

A Ginsburg 1, R H Szczepanowski 1, S B Ruvinov 1, N J Nosworthy 1, M Sondej 1, T C Umland 1, A Peterkofsky 1
PMCID: PMC2144657  PMID: 10892802

Abstract

The amino terminal domain of enzyme I (residues 1-258 + Arg; EIN) and full length enzyme I (575 residues; EI) harboring active-site mutations (H189E, expected to have properties of phosphorylated forms, and H189A) have been produced by protein bioengineering. Differential scanning calorimetry (DSC) and temperature-induced changes in ellipticity at 222 nm for monomeric wild-type and mutant EIN proteins indicate two-state unfolding. For EIN proteins in 10 mM K-phosphate (and 100 mM KCl) at pH 7.5, deltaH approximately 140 +/- 10 (160) kcal mol(-1) and deltaCp approximately 2.7 (3.3) kcal K(-1) mol(-1). Transition temperatures (Tm) are 57 (59), 55 (58), and 53 (56) degrees C for wild-type, H189A, and H189E forms of EIN, respectively. The order of conformational stability for dephospho-His189, phospho-His189, and H189 substitutions of EIN at pH 7.5 is: His > Ala > Glu > His-PO3(2-) due to differences in conformational entropy. Although H189E mutants have decreased Tm values for overall unfolding the amino terminal domain, a small segment of structure (3 to 12%) is stabilized (Tm approximately 66-68 degrees C). This possibly arises from an ion pair interaction between the gamma-carboxyl of Glu189 and the epsilon-amino group of Lys69 in the docking region for the histidine-containing phosphocarrier protein HPr. However, the binding of HPr to wild-type and active-site mutants of EIN and EI is temperature-independent (entropically controlled) with about the same affinity constant at pH 7.5: K(A)' = 3 +/- 1 x 10(5) M(-1) for EIN and approximately 1.2 x 10(5) M(-1) for EI.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becktel W. J., Schellman J. A. Protein stability curves. Biopolymers. 1987 Nov;26(11):1859–1877. doi: 10.1002/bip.360261104. [DOI] [PubMed] [Google Scholar]
  2. Brandts J. F., Hu C. Q., Lin L. N., Mos M. T. A simple model for proteins with interacting domains. Applications to scanning calorimetry data. Biochemistry. 1989 Oct 17;28(21):8588–8596. doi: 10.1021/bi00447a048. [DOI] [PubMed] [Google Scholar]
  3. Chauvin F., Fomenkov A., Johnson C. R., Roseman S. The N-terminal domain of Escherichia coli enzyme I of the phosphoenolpyruvate/glycose phosphotransferase system: molecular cloning and characterization. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7028–7031. doi: 10.1073/pnas.93.14.7028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. D'Aquino J. A., Gómez J., Hilser V. J., Lee K. H., Amzel L. M., Freire E. The magnitude of the backbone conformational entropy change in protein folding. Proteins. 1996 Jun;25(2):143–156. doi: 10.1002/(SICI)1097-0134(199606)25:2<143::AID-PROT1>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  5. Garrett D. S., Seok Y. J., Liao D. I., Peterkofsky A., Gronenborn A. M., Clore G. M. Solution structure of the 30 kDa N-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system by multidimensional NMR. Biochemistry. 1997 Mar 4;36(9):2517–2530. doi: 10.1021/bi962924y. [DOI] [PubMed] [Google Scholar]
  6. Garrett D. S., Seok Y. J., Peterkofsky A., Clore G. M., Gronenborn A. M. Identification by NMR of the binding surface for the histidine-containing phosphocarrier protein HPr on the N-terminal domain of enzyme I of the Escherichia coli phosphotransferase system. Biochemistry. 1997 Apr 15;36(15):4393–4398. doi: 10.1021/bi970221q. [DOI] [PubMed] [Google Scholar]
  7. Garrett D. S., Seok Y. J., Peterkofsky A., Clore G. M., Gronenborn A. M. Tautomeric state and pKa of the phosphorylated active site histidine in the N-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system. Protein Sci. 1998 Mar;7(3):789–793. doi: 10.1002/pro.5560070329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Garrett D. S., Seok Y. J., Peterkofsky A., Gronenborn A. M., Clore G. M. Solution structure of the 40,000 Mr phosphoryl transfer complex between the N-terminal domain of enzyme I and HPr. Nat Struct Biol. 1999 Feb;6(2):166–173. doi: 10.1038/5854. [DOI] [PubMed] [Google Scholar]
  9. Ginsburg A., Zolkiewski M. Differential scanning calorimetry study of reversible, partial unfolding transitions in dodecameric glutamine synthetase from Escherichia coli. Biochemistry. 1991 Oct 1;30(39):9421–9429. doi: 10.1021/bi00103a005. [DOI] [PubMed] [Google Scholar]
  10. Hilser V. J., Gómez J., Freire E. The enthalpy change in protein folding and binding: refinement of parameters for structure-based calculations. Proteins. 1996 Oct;26(2):123–133. doi: 10.1002/(SICI)1097-0134(199610)26:2<123::AID-PROT2>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  11. Huffine M. E., Scholtz J. M. Energetic implications for protein phosphorylation. Conformational stability of HPr variants that mimic phosphorylated forms. J Biol Chem. 1996 Nov 15;271(46):28898–28902. doi: 10.1074/jbc.271.46.28898. [DOI] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. LiCalsi C., Crocenzi T. S., Freire E., Roseman S. Sugar transport by the bacterial phosphotransferase system. Structural and thermodynamic domains of enzyme I of Salmonella typhimurium. J Biol Chem. 1991 Oct 15;266(29):19519–19527. [PubMed] [Google Scholar]
  14. Liao D. I., Silverton E., Seok Y. J., Lee B. R., Peterkofsky A., Davies D. R. The first step in sugar transport: crystal structure of the amino terminal domain of enzyme I of the E. coli PEP: sugar phosphotransferase system and a model of the phosphotransfer complex with HPr. Structure. 1996 Jul 15;4(7):861–872. doi: 10.1016/s0969-2126(96)00092-5. [DOI] [PubMed] [Google Scholar]
  15. Makhatadze G. I., Privalov P. L. Hydration effects in protein unfolding. Biophys Chem. 1994 Aug;51(2-3):291–309. doi: 10.1016/0301-4622(94)00050-6. [DOI] [PubMed] [Google Scholar]
  16. Meadow N. D., Fox D. K., Roseman S. The bacterial phosphoenolpyruvate: glycose phosphotransferase system. Annu Rev Biochem. 1990;59:497–542. doi: 10.1146/annurev.bi.59.070190.002433. [DOI] [PubMed] [Google Scholar]
  17. Nosworthy N. J., Peterkofsky A., König S., Seok Y. J., Szczepanowski R. H., Ginsburg A. Phosphorylation destabilizes the amino-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system. Biochemistry. 1998 May 12;37(19):6718–6726. doi: 10.1021/bi980126x. [DOI] [PubMed] [Google Scholar]
  18. Plotnikov V. V., Brandts J. M., Lin L. N., Brandts J. F. A new ultrasensitive scanning calorimeter. Anal Biochem. 1997 Aug 1;250(2):237–244. doi: 10.1006/abio.1997.2236. [DOI] [PubMed] [Google Scholar]
  19. Privalov G., Kavina V., Freire E., Privalov P. L. Precise scanning calorimeter for studying thermal properties of biological macromolecules in dilute solution. Anal Biochem. 1995 Nov 20;232(1):79–85. doi: 10.1006/abio.1995.9957. [DOI] [PubMed] [Google Scholar]
  20. Rajagopal P., Waygood E. B., Klevit R. E. Structural consequences of histidine phosphorylation: NMR characterization of the phosphohistidine form of histidine-containing protein from Bacillus subtilis and Escherichia coli. Biochemistry. 1994 Dec 27;33(51):15271–15282. doi: 10.1021/bi00255a008. [DOI] [PubMed] [Google Scholar]
  21. Reddy P., Fredd-Kuldell N., Liberman E., Peterkofsky A. Overproduction and rapid purification of the phosphoenolpyruvate:sugar phosphotransferase system proteins enzyme I, HPr, and Protein IIIGlc of Escherichia coli. Protein Expr Purif. 1991 Apr-Jun;2(2-3):179–187. doi: 10.1016/1046-5928(91)90069-u. [DOI] [PubMed] [Google Scholar]
  22. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Seok Y. J., Lee B. R., Zhu P. P., Peterkofsky A. Importance of the carboxyl-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate: sugar phosphotransferase system for phosphoryl donor specificity. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):347–351. doi: 10.1073/pnas.93.1.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. WADDELL W. J. A simple ultraviolet spectrophotometric method for the determination of protein. J Lab Clin Med. 1956 Aug;48(2):311–314. [PubMed] [Google Scholar]
  25. Waygood E. B. Enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system has two sites of phosphorylation per dimer. Biochemistry. 1986 Jul 15;25(14):4085–4090. doi: 10.1021/bi00362a015. [DOI] [PubMed] [Google Scholar]
  26. Zhu P. P., Szczepanowski R. H., Nosworthy N. J., Ginsburg A., Peterkofsky A. Reconstitution studies using the helical and carboxy-terminal domains of enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system. Biochemistry. 1999 Nov 23;38(47):15470–15479. doi: 10.1021/bi991680p. [DOI] [PubMed] [Google Scholar]
  27. van Nuland N. A., Boelens R., Scheek R. M., Robillard G. T. High-resolution structure of the phosphorylated form of the histidine-containing phosphocarrier protein HPr from Escherichia coli determined by restrained molecular dynamics from NMR-NOE data. J Mol Biol. 1995 Feb 10;246(1):180–193. doi: 10.1006/jmbi.1994.0075. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES