Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Jun;9(6):1203–1209. doi: 10.1110/ps.9.6.1203

Amino acid repeat patterns in protein sequences: their diversity and structural-functional implications.

M V Katti 1, R Sami-Subbu 1, P K Ranjekar 1, V S Gupta 1
PMCID: PMC2144659  PMID: 10892812

Abstract

All the protein sequences from SWISS-PROT database were analyzed for occurrence of single amino acid repeats, tandem oligo-peptide repeats, and periodically conserved amino acids. Single amino acid repeats of glutamine, serine, glutamic acid, glycine, and alanine seem to be tolerated to a considerable extent in many proteins. Tandem oligo-peptide repeats of different types with varying levels of conservation were detected in several proteins and found to be conspicuous, particularly in structural and cell surface proteins. It appears that repeated sequence patterns may be a mechanism that provides regular arrays of spatial and functional groups, useful for structural packing or for one to one interactions with target molecules. To facilitate further explorations, a database of Tandem Repeats in Protein Sequences (TRIPS) has been developed and is available at URL: http://www.ncl-india.org/trips.

Full Text

The Full Text of this article is available as a PDF (49.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bairoch A., Apweiler R. The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1999. Nucleic Acids Res. 1999 Jan 1;27(1):49–54. doi: 10.1093/nar/27.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bateman A., Murzin A. G., Teichmann S. A. Structure and distribution of pentapeptide repeats in bacteria. Protein Sci. 1998 Jun;7(6):1477–1480. doi: 10.1002/pro.5560070625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buscaglia C. A., Alfonso J., Campetella O., Frasch A. C. Tandem amino acid repeats from Trypanosoma cruzi shed antigens increase the half-life of proteins in blood. Blood. 1999 Mar 15;93(6):2025–2032. [PubMed] [Google Scholar]
  4. Corden J. L., Patturajan M. A CTD function linking transcription to splicing. Trends Biochem Sci. 1997 Nov;22(11):413–416. doi: 10.1016/s0968-0004(97)01125-0. [DOI] [PubMed] [Google Scholar]
  5. Coward E., Drabløs F. Detecting periodic patterns in biological sequences. Bioinformatics. 1998;14(6):498–507. doi: 10.1093/bioinformatics/14.6.498. [DOI] [PubMed] [Google Scholar]
  6. Gerber H. P., Seipel K., Georgiev O., Höfferer M., Hug M., Rusconi S., Schaffner W. Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science. 1994 Feb 11;263(5148):808–811. doi: 10.1126/science.8303297. [DOI] [PubMed] [Google Scholar]
  7. Golding G. B. Simple sequence is abundant in eukaryotic proteins. Protein Sci. 1999 Jun;8(6):1358–1361. doi: 10.1110/ps.8.6.1358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Green H., Wang N. Codon reiteration and the evolution of proteins. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4298–4302. doi: 10.1073/pnas.91.10.4298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Groves M. R., Barford D. Topological characteristics of helical repeat proteins. Curr Opin Struct Biol. 1999 Jun;9(3):383–389. doi: 10.1016/s0959-440x(99)80052-9. [DOI] [PubMed] [Google Scholar]
  10. Heringa J., Argos P. A method to recognize distant repeats in protein sequences. Proteins. 1993 Dec;17(4):391–341. doi: 10.1002/prot.340170407. [DOI] [PubMed] [Google Scholar]
  11. Heringa J. Detection of internal repeats: how common are they? Curr Opin Struct Biol. 1998 Jun;8(3):338–345. doi: 10.1016/s0959-440x(98)80068-7. [DOI] [PubMed] [Google Scholar]
  12. Heringa J., Taylor W. R. Three-dimensional domain duplication, swapping and stealing. Curr Opin Struct Biol. 1997 Jun;7(3):416–421. doi: 10.1016/s0959-440x(97)80060-7. [DOI] [PubMed] [Google Scholar]
  13. Julien J. P., Mushynski W. E. Neurofilaments in health and disease. Prog Nucleic Acid Res Mol Biol. 1998;61:1–23. doi: 10.1016/s0079-6603(08)60823-5. [DOI] [PubMed] [Google Scholar]
  14. Kajava A. V., Lindow S. E. A model of the three-dimensional structure of ice nucleation proteins. J Mol Biol. 1993 Aug 5;232(3):709–717. doi: 10.1006/jmbi.1993.1424. [DOI] [PubMed] [Google Scholar]
  15. Kashi Y., King D., Soller M. Simple sequence repeats as a source of quantitative genetic variation. Trends Genet. 1997 Feb;13(2):74–78. doi: 10.1016/s0168-9525(97)01008-1. [DOI] [PubMed] [Google Scholar]
  16. Landschulz W. H., Johnson P. F., McKnight S. L. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science. 1988 Jun 24;240(4860):1759–1764. doi: 10.1126/science.3289117. [DOI] [PubMed] [Google Scholar]
  17. Marcotte E. M., Pellegrini M., Yeates T. O., Eisenberg D. A census of protein repeats. J Mol Biol. 1999 Oct 15;293(1):151–160. doi: 10.1006/jmbi.1999.3136. [DOI] [PubMed] [Google Scholar]
  18. Muragaki Y., Mundlos S., Upton J., Olsen B. R. Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13. Science. 1996 Apr 26;272(5261):548–551. doi: 10.1126/science.272.5261.548. [DOI] [PubMed] [Google Scholar]
  19. Pearson C. E., Sinden R. R. Trinucleotide repeat DNA structures: dynamic mutations from dynamic DNA. Curr Opin Struct Biol. 1998 Jun;8(3):321–330. doi: 10.1016/s0959-440x(98)80065-1. [DOI] [PubMed] [Google Scholar]
  20. Pellegrini M., Marcotte E. M., Yeates T. O. A fast algorithm for genome-wide analysis of proteins with repeated sequences. Proteins. 1999 Jun 1;35(4):440–446. [PubMed] [Google Scholar]
  21. Perutz M. F. Glutamine repeats and neurodegenerative diseases: molecular aspects. Trends Biochem Sci. 1999 Feb;24(2):58–63. doi: 10.1016/s0968-0004(98)01350-4. [DOI] [PubMed] [Google Scholar]
  22. Perutz M. F., Johnson T., Suzuki M., Finch J. T. Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5355–5358. doi: 10.1073/pnas.91.12.5355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Raetz C. R., Roderick S. L. A left-handed parallel beta helix in the structure of UDP-N-acetylglucosamine acyltransferase. Science. 1995 Nov 10;270(5238):997–1000. doi: 10.1126/science.270.5238.997. [DOI] [PubMed] [Google Scholar]
  24. Sicheri F., Yang D. S. Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Nature. 1995 Jun 1;375(6530):427–431. doi: 10.1038/375427a0. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES