Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Jun;9(6):1194–1202. doi: 10.1110/ps.9.6.1194

Unfolding and refolding of cytochrome c driven by the interaction with lipid micelles.

N Sanghera 1, T J Pinheiro 1
PMCID: PMC2144667  PMID: 10892811

Abstract

Binding of native cyt c to L-PG micelles leads to a partially unfolded conformation of cyt c. This micelle-bound state has no stable tertiary structure, but remains as alpha-helical as native cyt c in solution. In contrast, binding of the acid-unfolded cyt c to L-PG micelles induces folding of the polypeptide, resulting in a similar helical state to that originated from the binding of native cyt c to L-PG micelles. Far-ultraviolet (UV) circular dichroism (CD) spectra showed that this common micelle-associated helical state (HL) has a native-like alpha-helix content, but is highly expanded without a tightly packed hydrophobic core, as revealed by tryptophan fluorescence, near-UV, and Soret CD spectroscopy. The kinetics of the interaction of native and acid-unfolded cyt c was investigated by stopped-flow tryptophan fluorescence. Formation of H(L) from the native state requires the disruption of the tightly packed hydrophobic core in the native protein. This micelle-induced unfolding of cyt c occurs at a rate approximately 0.1 s(-1), which is remarkably faster in the lipid environment compared with the expected rate of unfolding in solution. Refolding of acid-unfolded cyt c with L-PG micelles involves an early highly helical collapsed state formed during the burst phase (<3 ms), and the observed main kinetic event reports on the opening of this early compact intermediate prior to insertion into the lipid micelle.

Full Text

The Full Text of this article is available as a PDF (265.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babul J., Stellwagen E. Participation of the protein ligands in the folding of cytochrome c. Biochemistry. 1972 Mar 28;11(7):1195–1200. doi: 10.1021/bi00757a013. [DOI] [PubMed] [Google Scholar]
  2. Bryson E. A., Rankin S. E., Carey M., Watts A., Pinheiro T. J. Folding of apocytochrome c in lipid micelles: formation of alpha-helix precedes membrane insertion. Biochemistry. 1999 Jul 27;38(30):9758–9767. doi: 10.1021/bi990119o. [DOI] [PubMed] [Google Scholar]
  3. Bushnell G. W., Louie G. V., Brayer G. D. High-resolution three-dimensional structure of horse heart cytochrome c. J Mol Biol. 1990 Jul 20;214(2):585–595. doi: 10.1016/0022-2836(90)90200-6. [DOI] [PubMed] [Google Scholar]
  4. Chan C. K., Hu Y., Takahashi S., Rousseau D. L., Eaton W. A., Hofrichter J. Submillisecond protein folding kinetics studied by ultrarapid mixing. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1779–1784. doi: 10.1073/pnas.94.5.1779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Colón W., Elöve G. A., Wakem L. P., Sherman F., Roder H. Side chain packing of the N- and C-terminal helices plays a critical role in the kinetics of cytochrome c folding. Biochemistry. 1996 Apr 30;35(17):5538–5549. doi: 10.1021/bi960052u. [DOI] [PubMed] [Google Scholar]
  6. Colón W., Wakem L. P., Sherman F., Roder H. Identification of the predominant non-native histidine ligand in unfolded cytochrome c. Biochemistry. 1997 Oct 14;36(41):12535–12541. doi: 10.1021/bi971697c. [DOI] [PubMed] [Google Scholar]
  7. Cortese J. D., Voglino A. L., Hackenbrock C. R. Multiple conformations of physiological membrane-bound cytochrome c. Biochemistry. 1998 May 5;37(18):6402–6409. doi: 10.1021/bi9730543. [DOI] [PubMed] [Google Scholar]
  8. Davies A. M., Guillemette J. G., Smith M., Greenwood C., Thurgood A. G., Mauk A. G., Moore G. R. Redesign of the interior hydrophilic region of mitochondrial cytochrome c by site-directed mutagenesis. Biochemistry. 1993 May 25;32(20):5431–5435. doi: 10.1021/bi00071a019. [DOI] [PubMed] [Google Scholar]
  9. Elöve G. A., Bhuyan A. K., Roder H. Kinetic mechanism of cytochrome c folding: involvement of the heme and its ligands. Biochemistry. 1994 Jun 7;33(22):6925–6935. doi: 10.1021/bi00188a023. [DOI] [PubMed] [Google Scholar]
  10. Elöve G. A., Chaffotte A. F., Roder H., Goldberg M. E. Early steps in cytochrome c folding probed by time-resolved circular dichroism and fluorescence spectroscopy. Biochemistry. 1992 Aug 4;31(30):6876–6883. doi: 10.1021/bi00145a003. [DOI] [PubMed] [Google Scholar]
  11. Gierasch L. M. Signal sequences. Biochemistry. 1989 Feb 7;28(3):923–930. doi: 10.1021/bi00429a001. [DOI] [PubMed] [Google Scholar]
  12. Gupte S. S., Hackenbrock C. R. The role of cytochrome c diffusion in mitochondrial electron transport. J Biol Chem. 1988 Apr 15;263(11):5248–5253. [PubMed] [Google Scholar]
  13. Hildebrandt P., Heimburg T., Marsh D., Powell G. L. Conformational changes in cytochrome c and cytochrome oxidase upon complex formation: a resonance Raman study. Biochemistry. 1990 Feb 13;29(6):1661–1668. doi: 10.1021/bi00458a044. [DOI] [PubMed] [Google Scholar]
  14. Hu Y., Benedict M. A., Ding L., Núez G. Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis. EMBO J. 1999 Jul 1;18(13):3586–3595. doi: 10.1093/emboj/18.13.3586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jemmerson R., Liu J., Hausauer D., Lam K. P., Mondino A., Nelson R. D. A conformational change in cytochrome c of apoptotic and necrotic cells is detected by monoclonal antibody binding and mimicked by association of the native antigen with synthetic phospholipid vesicles. Biochemistry. 1999 Mar 23;38(12):3599–3609. doi: 10.1021/bi9809268. [DOI] [PubMed] [Google Scholar]
  16. Jordi W., Zhou L. X., Pilon M., Demel R. A., de Kruijff B. The importance of the amino terminus of the mitochondrial precursor protein apocytochrome c for translocation across model membranes. J Biol Chem. 1989 Feb 5;264(4):2292–2301. [PubMed] [Google Scholar]
  17. Liu X., Kim C. N., Yang J., Jemmerson R., Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996 Jul 12;86(1):147–157. doi: 10.1016/s0092-8674(00)80085-9. [DOI] [PubMed] [Google Scholar]
  18. Maloy W. L., Kari U. P. Structure-activity studies on magainins and other host defense peptides. Biopolymers. 1995;37(2):105–122. doi: 10.1002/bip.360370206. [DOI] [PubMed] [Google Scholar]
  19. Muga A., Mantsch H. H., Surewicz W. K. Membrane binding induces destabilization of cytochrome c structure. Biochemistry. 1991 Jul 23;30(29):7219–7224. doi: 10.1021/bi00243a025. [DOI] [PubMed] [Google Scholar]
  20. Myer Y. P. Conformation of cytochromes. 3. Effect of urea, temperature, extrinsic ligands, and pH variation on the conformation of horse heart ferricytochrome c. Biochemistry. 1968 Feb;7(2):765–776. doi: 10.1021/bi00842a035. [DOI] [PubMed] [Google Scholar]
  21. Pinheiro T. J., Elöve G. A., Watts A., Roder H. Structural and kinetic description of cytochrome c unfolding induced by the interaction with lipid vesicles. Biochemistry. 1997 Oct 21;36(42):13122–13132. doi: 10.1021/bi971235z. [DOI] [PubMed] [Google Scholar]
  22. Pinheiro T. J. The interaction of horse heart cytochrome c with phospholipid bilayers. Structural and dynamic effects. Biochimie. 1994;76(6):489–500. doi: 10.1016/0300-9084(94)90173-2. [DOI] [PubMed] [Google Scholar]
  23. Pinheiro T. J., Watts A. Lipid specificity in the interaction of cytochrome c with anionic phospholipid bilayers revealed by solid-state 31P NMR. Biochemistry. 1994 Mar 8;33(9):2451–2458. doi: 10.1021/bi00175a013. [DOI] [PubMed] [Google Scholar]
  24. Ptitsyn O. B. Molten globule and protein folding. Adv Protein Chem. 1995;47:83–229. doi: 10.1016/s0065-3233(08)60546-x. [DOI] [PubMed] [Google Scholar]
  25. Rankin S. E., Watts A., Pinheiro T. J. Electrostatic and hydrophobic contributions to the folding mechanism of apocytochrome c driven by the interaction with lipid. Biochemistry. 1998 Sep 8;37(36):12588–12595. doi: 10.1021/bi980408x. [DOI] [PubMed] [Google Scholar]
  26. Rankin S. E., Watts A., Roder H., Pinheiro T. J. Folding of apocytochrome c induced by the interaction with negatively charged lipid micelles proceeds via a collapsed intermediate state. Protein Sci. 1999 Feb;8(2):381–393. doi: 10.1110/ps.8.2.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Roder H., Elöve G. A., Englander S. W. Structural characterization of folding intermediates in cytochrome c by H-exchange labelling and proton NMR. Nature. 1988 Oct 20;335(6192):700–704. doi: 10.1038/335700a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sauder J. M., MacKenzie N. E., Roder H. Kinetic mechanism of folding and unfolding of Rhodobacter capsulatus cytochrome c2. Biochemistry. 1996 Dec 24;35(51):16852–16862. doi: 10.1021/bi961976k. [DOI] [PubMed] [Google Scholar]
  29. Shai Y. Pardaxin: channel formation by a shark repellant peptide from fish. Toxicology. 1994 Feb 28;87(1-3):109–129. doi: 10.1016/0300-483x(94)90157-0. [DOI] [PubMed] [Google Scholar]
  30. Shastry M. C., Roder H. Evidence for barrier-limited protein folding kinetics on the microsecond time scale. Nat Struct Biol. 1998 May;5(5):385–392. doi: 10.1038/nsb0598-385. [DOI] [PubMed] [Google Scholar]
  31. Sosnick T. R., Mayne L., Englander S. W. Molecular collapse: the rate-limiting step in two-state cytochrome c folding. Proteins. 1996 Apr;24(4):413–426. doi: 10.1002/(SICI)1097-0134(199604)24:4<413::AID-PROT1>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  32. Speck S. H., Neu C. A., Swanson M. S., Margoliash E. Role of phospholipid in the low affinity reactions between cytochrome c and cytochrome oxidase. FEBS Lett. 1983 Dec 12;164(2):379–382. doi: 10.1016/0014-5793(83)80321-4. [DOI] [PubMed] [Google Scholar]
  33. Spooner P. J., Watts A. Reversible unfolding of cytochrome c upon interaction with cardiolipin bilayers. 1. Evidence from deuterium NMR measurements. Biochemistry. 1991 Apr 23;30(16):3871–3879. doi: 10.1021/bi00230a010. [DOI] [PubMed] [Google Scholar]
  34. Thiaudière E., Siffert O., Talbot J. C., Bolard J., Alouf J. E., Dufourcq J. The amphiphilic alpha-helix concept. Consequences on the structure of staphylococcal delta-toxin in solution and bound to lipids. Eur J Biochem. 1991 Jan 1;195(1):203–213. doi: 10.1111/j.1432-1033.1991.tb15696.x. [DOI] [PubMed] [Google Scholar]
  35. Tsong T. Y. The Trp-59 fluorescence of ferricytochrome c as a sensitive measure of the over-all protein conformation. J Biol Chem. 1974 Mar 25;249(6):1988–1990. [PubMed] [Google Scholar]
  36. Vik S. B., Georgevich G., Capaldi R. A. Diphosphatidylglycerol is required for optimal activity of beef heart cytochrome c oxidase. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1456–1460. doi: 10.1073/pnas.78.3.1456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Vécsey-Semjén B., Lesieur C., Möllby R., van der Goot F. G. Conformational changes due to membrane binding and channel formation by staphylococcal alpha-toxin. J Biol Chem. 1997 Feb 28;272(9):5709–5717. doi: 10.1074/jbc.272.9.5709. [DOI] [PubMed] [Google Scholar]
  38. Zakharov S. D., Lindeberg M., Griko Y., Salamon Z., Tollin G., Prendergast F. G., Cramer W. A. Membrane-bound state of the colicin E1 channel domain as an extended two-dimensional helical array. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4282–4287. doi: 10.1073/pnas.95.8.4282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. de Jongh H. H., Killian J. A., de Kruijff B. A water-lipid interface induces a highly dynamic folded state in apocytochrome c and cytochrome c, which may represent a common folding intermediate. Biochemistry. 1992 Feb 18;31(6):1636–1643. doi: 10.1021/bi00121a008. [DOI] [PubMed] [Google Scholar]
  40. de Jongh H. H., de Kruijff B. The conformational changes of apocytochrome c upon binding to phospholipid vesicles and micelles of phospholipid based detergents: a circular dichroism study. Biochim Biophys Acta. 1990 Nov 2;1029(1):105–112. doi: 10.1016/0005-2736(90)90442-q. [DOI] [PubMed] [Google Scholar]
  41. van der Goot F. G., González-Mañas J. M., Lakey J. H., Pattus F. A 'molten-globule' membrane-insertion intermediate of the pore-forming domain of colicin A. Nature. 1991 Dec 5;354(6352):408–410. doi: 10.1038/354408a0. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES