Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Jun;9(6):1217–1225. doi: 10.1110/ps.9.6.1217

Productive and nonproductive binding to ribonuclease A: X-ray structure of two complexes with uridylyl(2',5')guanosine.

L Vitagliano 1, A Merlino 1, A Zagari 1, L Mazzarella 1
PMCID: PMC2144668  PMID: 10892814

Abstract

Guanine-containing mono- and dinucleotides bind to the active site of ribonuclease A in a nonproductive mode (retro-binding) (Aguilar CF, Thomas PJ, Mills A, Moss DS, Palmer RA. 1992. J Mol Biol 224:265-267). Guanine binds to the highly specific pyrimidine site by forming hydrogen bonds with Thr45 and with the sulfate anion located in the P1 site. To investigate the influence of the anion present in the P1 site on retro-binding, we determined the structure of two new complexes of RNase A with uridylyl(2',5')guanosine obtained by soaking two different forms of pre-grown RNase A crystals. In one case, RNase A was crystallized without removing the sulfate anion strongly bound to the active site; in the other, the protein was first equilibrated with a basic solution to displace the anion from the P1 site. The X-ray structures of the complexes with and without sulfate in P1 were refined using diffraction data up to 1.8 A (R-factor 0.192) and 2.0 A (R-factor 0.178), respectively. The binding mode of the substrate analogue to the protein differs markedly in the two complexes. When the sulfate is located in P1, we observe retro-binding; whereas when the anion is removed from the active site, the uridine is productively bound at the B1 site. In the productive complex, the electron density is very well defined for the uridine moiety, whereas the downstream guanine is disordered. This finding indicates that the interactions of guanine in the B2 site are rather weak and that this site is essentially adenine preferring. In this crystal form, there are two molecules per asymmetric unit, and due to crystal packing, only the active site of one molecule is accessible to the ligand. Thus, in the same crystal we have a ligand-bound and a ligand-free RNase A molecule. The comparison of these two structures furnishes a detailed and reliable picture of the structural alterations induced by the binding of the substrate. These results provide structural information to support the hypotheses on the role of RNase A active site residues that have recently emerged from site-directed mutagenesis studies.

Full Text

The Full Text of this article is available as a PDF (796.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguilar C. F., Thomas P. J., Mills A., Moss D. S., Palmer R. A. Newly observed binding mode in pancreatic ribonuclease. J Mol Biol. 1992 Mar 5;224(1):265–267. doi: 10.1016/0022-2836(92)90589-c. [DOI] [PubMed] [Google Scholar]
  2. Aguilar C. F., Thomas P. J., Moss D. S., Mills A., Palmer R. A. Novel non-productively bound ribonuclease inhibitor complexes--high resolution X-ray refinement studies on the binding of RNase-A to cytidylyl-2',5'-guanosine (2',5'CpG) and deoxycytidylyl-3',5'-guanosine (3',5'dCpdG). Biochim Biophys Acta. 1991 Dec 11;1118(1):6–20. doi: 10.1016/0167-4838(91)90435-3. [DOI] [PubMed] [Google Scholar]
  3. Beintema J. J., Schüller C., Irie M., Carsana A. Molecular evolution of the ribonuclease superfamily. Prog Biophys Mol Biol. 1988;51(3):165–192. doi: 10.1016/0079-6107(88)90001-6. [DOI] [PubMed] [Google Scholar]
  4. Benner S. A., Allemann R. K. The return of pancreatic ribonucleases. Trends Biochem Sci. 1989 Oct;14(10):396–397. doi: 10.1016/0968-0004(89)90282-x. [DOI] [PubMed] [Google Scholar]
  5. Berisio R., Lamzin V. S., Sica F., Wilson K. S., Zagari A., Mazzarella L. Protein titration in the crystal state. J Mol Biol. 1999 Oct 1;292(4):845–854. doi: 10.1006/jmbi.1999.3093. [DOI] [PubMed] [Google Scholar]
  6. Campbell R. L., Petsko G. A. Ribonuclease structure and catalysis: crystal structure of sulfate-free native ribonuclease A at 1.5-A resolution. Biochemistry. 1987 Dec 29;26(26):8579–8584. doi: 10.1021/bi00400a013. [DOI] [PubMed] [Google Scholar]
  7. Chang C. F., Chen C., Chen Y. C., Hom K., Huang R. F., Huang T. H. The solution structure of a cytotoxic ribonuclease from the oocytes of Rana catesbeiana (bullfrog). J Mol Biol. 1998;283(1):231–244. doi: 10.1006/jmbi.1998.2082. [DOI] [PubMed] [Google Scholar]
  8. Esnouf R. M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J Mol Graph Model. 1997 Apr;15(2):132-4, 112-3. doi: 10.1016/S1093-3263(97)00021-1. [DOI] [PubMed] [Google Scholar]
  9. Fisher B. M., Schultz L. W., Raines R. T. Coulombic effects of remote subsites on the active site of ribonuclease A. Biochemistry. 1998 Dec 15;37(50):17386–17401. doi: 10.1021/bi981369s. [DOI] [PubMed] [Google Scholar]
  10. Fontecilla-Camps J. C., de Llorens R., le Du M. H., Cuchillo C. M. Crystal structure of ribonuclease A.d(ApTpApApG) complex. Direct evidence for extended substrate recognition. J Biol Chem. 1994 Aug 26;269(34):21526–21531. doi: 10.2210/pdb1rcn/pdb. [DOI] [PubMed] [Google Scholar]
  11. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  12. Katoh H., Yoshinaga M., Yanagita T., Ohgi K., Irie M., Beintema J. J., Meinsma D. Kinetic studies on turtle pancreatic ribonuclease: a comparative study of the base specificities of the B2 and P0 sites of bovine pancreatic ribonuclease A and turtle pancreatic ribonuclease. Biochim Biophys Acta. 1986 Oct 17;873(3):367–371. doi: 10.1016/0167-4838(86)90085-3. [DOI] [PubMed] [Google Scholar]
  13. Lancelot G., Hélène C. Phosphate-guanosine interactions. A model for the involvement of guanine derivatives in autocatalytic reactions of ribonucleic acids. J Biol Chem. 1984 Dec 25;259(24):15046–15050. [PubMed] [Google Scholar]
  14. Leonidas D. D., Shapiro R., Irons L. I., Russo N., Acharya K. R. Crystal structures of ribonuclease A complexes with 5'-diphosphoadenosine 3'-phosphate and 5'-diphosphoadenosine 2'-phosphate at 1.7 A resolution. Biochemistry. 1997 May 6;36(18):5578–5588. doi: 10.1021/bi9700330. [DOI] [PubMed] [Google Scholar]
  15. Lisgarten J. N., Gupta V., Maes D., Wyns L., Zegers I., Palmer R. A., Dealwis C. G., Aguilar C. F., Hemmings A. M. Structure of the crystalline complex of cytidylic acid (2'-CMP) with ribonuclease at 1.6 A resolution. Conservation of solvent sites in RNase-A high-resolution structures. Acta Crystallogr D Biol Crystallogr. 1993 Nov 1;49(Pt 6):541–547. doi: 10.1107/S090744499300719X. [DOI] [PubMed] [Google Scholar]
  16. Listgarten J. N., Maes D., Wyns L., Aguilar C. F., Palmer R. A. Structure of the crystalline complex of deoxycytidylyl-3',5'-guanosine (3',5'-dCpdG) cocrystallized with ribonuclease at 1.9 A resolution. Acta Crystallogr D Biol Crystallogr. 1995 Sep 1;51(Pt 5):767–771. doi: 10.1107/S0907444995001570. [DOI] [PubMed] [Google Scholar]
  17. Moodie S. L., Thornton J. M. A study into the effects of protein binding on nucleotide conformation. Nucleic Acids Res. 1993 Mar 25;21(6):1369–1380. doi: 10.1093/nar/21.6.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Raines Ronald T. Ribonuclease A. Chem Rev. 1998 May 7;98(3):1045–1066. doi: 10.1021/cr960427h. [DOI] [PubMed] [Google Scholar]
  19. Schultz L. W., Quirk D. J., Raines R. T. His...Asp catalytic dyad of ribonuclease A: structure and function of the wild-type, D121N, and D121A enzymes. Biochemistry. 1998 Jun 23;37(25):8886–8898. doi: 10.1021/bi972766q. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tarragona-Fiol A., Eggelte H. J., Harbron S., Sanchez E., Taylorson C. J., Ward J. M., Rabin B. R. Identification by site-directed mutagenesis of amino acids in the B2 subsite of bovine pancreatic ribonuclease A. Protein Eng. 1993 Nov;6(8):901–906. doi: 10.1093/protein/6.8.901. [DOI] [PubMed] [Google Scholar]
  21. Toiron C., González C., Bruix M., Rico M. Three-dimensional structure of the complexes of ribonuclease A with 2',5'-CpA and 3',5'-d(CpA) in aqueous solution, as obtained by NMR and restrained molecular dynamics. Protein Sci. 1996 Aug;5(8):1633–1647. doi: 10.1002/pro.5560050817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Usher D. A. On the mechanism of ribonuclease action. Proc Natl Acad Sci U S A. 1969 Mar;62(3):661–667. doi: 10.1073/pnas.62.3.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vitagliano L., Adinolfi S., Riccio A., Sica F., Zagari A., Mazzarella L. Binding of a substrate analog to a domain swapping protein: X-ray structure of the complex of bovine seminal ribonuclease with uridylyl(2',5')adenosine. Protein Sci. 1998 Aug;7(8):1691–1699. doi: 10.1002/pro.5560070804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vitagliano L., Adinolfi S., Sica F., Merlino A., Zagari A., Mazzarella L. A potential allosteric subsite generated by domain swapping in bovine seminal ribonuclease. J Mol Biol. 1999 Oct 29;293(3):569–577. doi: 10.1006/jmbi.1999.3158. [DOI] [PubMed] [Google Scholar]
  25. Wlodawer A., Miller M., Sjölin L. Active site of RNase: neutron diffraction study of a complex with uridine vanadate, a transition-state analog. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3628–3631. doi: 10.1073/pnas.80.12.3628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wlodawer A., Sjölin L. Structure of ribonuclease A: results of joint neutron and X-ray refinement at 2.0-A resolution. Biochemistry. 1983 May 24;22(11):2720–2728. doi: 10.1021/bi00280a021. [DOI] [PubMed] [Google Scholar]
  27. Wlodawer A., Svensson L. A., Sjölin L., Gilliland G. L. Structure of phosphate-free ribonuclease A refined at 1.26 A. Biochemistry. 1988 Apr 19;27(8):2705–2717. doi: 10.1021/bi00408a010. [DOI] [PubMed] [Google Scholar]
  28. Wodak S. Y. The structure of cytidilyl(2',5')adenosine when bound to pancreatic ribonuclease S. J Mol Biol. 1977 Nov;116(4):855–875. doi: 10.1016/0022-2836(77)90275-3. [DOI] [PubMed] [Google Scholar]
  29. Zegers I., Maes D., Dao-Thi M. H., Poortmans F., Palmer R., Wyns L. The structures of RNase A complexed with 3'-CMP and d(CpA): active site conformation and conserved water molecules. Protein Sci. 1994 Dec;3(12):2322–2339. doi: 10.1002/pro.5560031217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. delCardayré S. B., Raines R. T. A residue to residue hydrogen bond mediates the nucleotide specificity of ribonuclease A. J Mol Biol. 1995 Sep 22;252(3):328–336. doi: 10.1006/jmbi.1995.0500. [DOI] [PubMed] [Google Scholar]
  31. delCardayré S. B., Ribó M., Yokel E. M., Quirk D. J., Rutter W. J., Raines R. T. Engineering ribonuclease A: production, purification and characterization of wild-type enzyme and mutants at Gln11. Protein Eng. 1995 Mar;8(3):261–273. doi: 10.1093/protein/8.3.261. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES