Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Jul;9(7):1416–1419. doi: 10.1110/ps.9.7.1416

van't Hoff enthalpies without baselines.

D M John 1, K M Weeks 1
PMCID: PMC2144671  PMID: 10933511

Abstract

Analysis of thermal melting curves represents one important approach for evaluating protein stability and the consequences of amino acid substitution on protein structure. By use of the van't Hoff relationship, the differential melting curve can be robustly fit to only three parameters, two of which are the underlying physical constants of melting temperature (Tm) and van't Hoff enthalpy (deltaHvH). Calculated Tm and deltaHvH values are insensitive to the choice of pre- and post-transition baselines. Consequently, the method accurately computes Tm and deltaHvH for extremely truncated data sets, in the complete absence of baseline information, and for proteins with low melting temperatures, where the traditional direct approach routinely fails. Moreover, agreement between deltaHvH values obtained using points derived from pre- vs. post-transition data provide an independent method for detecting some classes of non-two-state transitions. Finally, fitting of the differential denaturation curve should prove useful for analysis of abbreviated data sets obtained from high throughput array analysis of protein stability.

Full Text

The Full Text of this article is available as a PDF (157.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen D. L., Pielak G. J. Baseline length and automated fitting of denaturation data. Protein Sci. 1998 May;7(5):1262–1263. doi: 10.1002/pro.5560070524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cooper A. Thermodynamic analysis of biomolecular interactions. Curr Opin Chem Biol. 1999 Oct;3(5):557–563. doi: 10.1016/s1367-5931(99)00008-3. [DOI] [PubMed] [Google Scholar]
  3. Elwell M., Schellman J. Phage T4 lysozyme. Physical properties and reversible unfolding. Biochim Biophys Acta. 1975 Mar 28;386(1):309–323. doi: 10.1016/0005-2795(75)90273-1. [DOI] [PubMed] [Google Scholar]
  4. Eriksson A. E., Baase W. A., Zhang X. J., Heinz D. W., Blaber M., Baldwin E. P., Matthews B. W. Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science. 1992 Jan 10;255(5041):178–183. doi: 10.1126/science.1553543. [DOI] [PubMed] [Google Scholar]
  5. Freire E. Thermal denaturation methods in the study of protein folding. Methods Enzymol. 1995;259:144–168. doi: 10.1016/0076-6879(95)59042-0. [DOI] [PubMed] [Google Scholar]
  6. Gralla J., Crothers D. M. Free energy of imperfect nucleic acid helices. 3. Small internal loops resulting from mismatches. J Mol Biol. 1973 Aug 5;78(2):301–319. doi: 10.1016/0022-2836(73)90118-6. [DOI] [PubMed] [Google Scholar]
  7. Hermans J., Jr Methods for the study of reversible denaturation of proteins and interpretation of data. Methods Biochem Anal. 1965;13:81–111. [PubMed] [Google Scholar]
  8. Hickey D. R., Berghuis A. M., Lafond G., Jaeger J. A., Cardillo T. S., McLendon D., Das G., Sherman F., Brayer G. D., McLendon G. Enhanced thermodynamic stabilities of yeast iso-1-cytochromes c with amino acid replacements at positions 52 and 102. J Biol Chem. 1991 Jun 25;266(18):11686–11694. [PubMed] [Google Scholar]
  9. Hostetter D. R., Weatherly G. T., Beasley J. R., Bortone K., Cohen D. S., Finger S. A., Hardwidge P., Kakouras D. S., Saunders A. J., Trojak S. K. Partially formed native tertiary interactions in the A-state of cytochrome c. J Mol Biol. 1999 Jun 11;289(3):639–644. doi: 10.1006/jmbi.1999.2764. [DOI] [PubMed] [Google Scholar]
  10. John D. M., Weeks K. M. Tagging DNA mismatches by selective 2'-amine acylation. Chem Biol. 2000 Jun;7(6):405–410. doi: 10.1016/s1074-5521(00)00121-6. [DOI] [PubMed] [Google Scholar]
  11. KAUZMANN W. Some factors in the interpretation of protein denaturation. Adv Protein Chem. 1959;14:1–63. doi: 10.1016/s0065-3233(08)60608-7. [DOI] [PubMed] [Google Scholar]
  12. Lumry R., Biltonen R. Validity of the "two-state" hypothesis for conformational transitions of proteins. Biopolymers. 1966 Sep;4(8):917–944. doi: 10.1002/bip.1966.360040808. [DOI] [PubMed] [Google Scholar]
  13. Marky L. A., Breslauer K. J. Calculating thermodynamic data for transitions of any molecularity from equilibrium melting curves. Biopolymers. 1987 Sep;26(9):1601–1620. doi: 10.1002/bip.360260911. [DOI] [PubMed] [Google Scholar]
  14. Marmorino J. L., Lehti M., Pielak G. J. Native tertiary structure in an A-state. J Mol Biol. 1998 Jan 16;275(2):379–388. doi: 10.1006/jmbi.1997.1450. [DOI] [PubMed] [Google Scholar]
  15. Marmorino J. L., Pielak G. J. A native tertiary interaction stabilizes the A state of cytochrome c. Biochemistry. 1995 Mar 14;34(10):3140–3143. doi: 10.1021/bi00010a002. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES