Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Jul;9(7):1340–1346. doi: 10.1110/ps.9.7.1340

The unfolding enthalpy of the pH 4 molten globule of apomyoglobin measured by isothermal titration calorimetry.

M Jamin 1, M Antalik 1, S N Loh 1, D W Bolen 1, R L Baldwin 1
PMCID: PMC2144672  PMID: 10933499

Abstract

The unfolding enthalpy of the pH 4 molten globule from sperm whale apomyoglobin has been measured by isothermal titration calorimetry, using titration to acid pH. The unfolding enthalpy is close to zero at 20 degrees C, in contrast both to the positive values expected for peptide helices and the negative values reported for holomyoglobin and native apomyoglobin. At 20 degrees C, the hydrophobic interaction should make only a small contribution to the unfolding enthalpy according to the liquid hydrocarbon model. Our result indicates that some factor present in the unfolding enthalpies of native proteins makes the unfolding enthalpy of the pH 4 molten globule less positive than expected from data for peptide helices.

Full Text

The Full Text of this article is available as a PDF (267.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin R. L. Temperature dependence of the hydrophobic interaction in protein folding. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8069–8072. doi: 10.1073/pnas.83.21.8069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Edelhoch H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry. 1967 Jul;6(7):1948–1954. doi: 10.1021/bi00859a010. [DOI] [PubMed] [Google Scholar]
  3. Eliezer D., Yao J., Dyson H. J., Wright P. E. Structural and dynamic characterization of partially folded states of apomyoglobin and implications for protein folding. Nat Struct Biol. 1998 Feb;5(2):148–155. doi: 10.1038/nsb0298-148. [DOI] [PubMed] [Google Scholar]
  4. FANELLI A. R., ANTONINI E., CAPUTO A. Studies on the structure of hemoglobin. I. Physicochemical properties of human globin. Biochim Biophys Acta. 1958 Dec;30(3):608–615. doi: 10.1016/0006-3002(58)90108-2. [DOI] [PubMed] [Google Scholar]
  5. Geierstanger B., Jamin M., Volkman B. F., Baldwin R. L. Protonation behavior of histidine 24 and histidine 119 in forming the pH 4 folding intermediate of apomyoglobin. Biochemistry. 1998 Mar 24;37(12):4254–4265. doi: 10.1021/bi972516+. [DOI] [PubMed] [Google Scholar]
  6. Griko Y. V., Freire E., Privalov P. L. Energetics of the alpha-lactalbumin states: a calorimetric and statistical thermodynamic study. Biochemistry. 1994 Feb 22;33(7):1889–1899. doi: 10.1021/bi00173a036. [DOI] [PubMed] [Google Scholar]
  7. Griko Y. V., Privalov P. L. Thermodynamic puzzle of apomyoglobin unfolding. J Mol Biol. 1994 Jan 28;235(4):1318–1325. doi: 10.1006/jmbi.1994.1085. [DOI] [PubMed] [Google Scholar]
  8. Griko Y. V., Privalov P. L., Venyaminov S. Y., Kutyshenko V. P. Thermodynamic study of the apomyoglobin structure. J Mol Biol. 1988 Jul 5;202(1):127–138. doi: 10.1016/0022-2836(88)90525-6. [DOI] [PubMed] [Google Scholar]
  9. Hamada D., Kidokoro S., Fukada H., Takahashi K., Goto Y. Salt-induced formation of the molten globule state of cytochrome c studied by isothermal titration calorimetry. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10325–10329. doi: 10.1073/pnas.91.22.10325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Huang Y., Bolen D. W. Covalent bond changes as a driving force in enzyme catalysis. Biochemistry. 1993 Sep 14;32(36):9329–9339. doi: 10.1021/bi00087a011. [DOI] [PubMed] [Google Scholar]
  11. Hughson F. M., Wright P. E., Baldwin R. L. Structural characterization of a partly folded apomyoglobin intermediate. Science. 1990 Sep 28;249(4976):1544–1548. doi: 10.1126/science.2218495. [DOI] [PubMed] [Google Scholar]
  12. Jamin M., Baldwin R. L. Refolding and unfolding kinetics of the equilibrium folding intermediate of apomyoglobin. Nat Struct Biol. 1996 Jul;3(7):613–618. doi: 10.1038/nsb0796-613. [DOI] [PubMed] [Google Scholar]
  13. Jamin M., Baldwin R. L. Two forms of the pH 4 folding intermediate of apomyoglobin. J Mol Biol. 1998 Feb 20;276(2):491–504. doi: 10.1006/jmbi.1997.1543. [DOI] [PubMed] [Google Scholar]
  14. Jamin M., Yeh S. R., Rousseau D. L., Baldwin R. L. Submillisecond unfolding kinetics of apomyoglobin and its pH 4 intermediate. J Mol Biol. 1999 Sep 24;292(3):731–740. doi: 10.1006/jmbi.1999.3074. [DOI] [PubMed] [Google Scholar]
  15. Kay M. S., Baldwin R. L. Alternative models for describing the acid unfolding of the apomyoglobin folding intermediate. Biochemistry. 1998 May 26;37(21):7859–7868. doi: 10.1021/bi9802061. [DOI] [PubMed] [Google Scholar]
  16. Kay M. S., Baldwin R. L. Packing interactions in the apomyglobin folding intermediate. Nat Struct Biol. 1996 May;3(5):439–445. doi: 10.1038/nsb0596-439. [DOI] [PubMed] [Google Scholar]
  17. Kay M. S., Ramos C. H., Baldwin R. L. Specificity of native-like interhelical hydrophobic contacts in the apomyoglobin intermediate. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2007–2012. doi: 10.1073/pnas.96.5.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Klapper M. H. On the nature of the protein interior. Biochim Biophys Acta. 1971 Mar 23;229(3):557–566. doi: 10.1016/0005-2795(71)90271-6. [DOI] [PubMed] [Google Scholar]
  19. Loh S. N., Kay M. S., Baldwin R. L. Structure and stability of a second molten globule intermediate in the apomyoglobin folding pathway. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5446–5450. doi: 10.1073/pnas.92.12.5446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Luo Y., Baldwin R. L. The 28-111 disulfide bond constrains the alpha-lactalbumin molten globule and weakens its cooperativity of folding. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11283–11287. doi: 10.1073/pnas.96.20.11283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Luo Y., Kay M. S., Baldwin R. L. Cooperativity of folding of the apomyoglobin pH 4 intermediate studied by glycine and proline mutations. Nat Struct Biol. 1997 Nov;4(11):925–930. doi: 10.1038/nsb1197-925. [DOI] [PubMed] [Google Scholar]
  22. Makhatadze G. I., Privalov P. L. Contribution of hydration to protein folding thermodynamics. I. The enthalpy of hydration. J Mol Biol. 1993 Jul 20;232(2):639–659. doi: 10.1006/jmbi.1993.1416. [DOI] [PubMed] [Google Scholar]
  23. Nishii I., Kataoka M., Goto Y. Thermodynamic stability of the molten globule states of apomyoglobin. J Mol Biol. 1995 Jul 7;250(2):223–238. doi: 10.1006/jmbi.1995.0373. [DOI] [PubMed] [Google Scholar]
  24. Richards F. M. Areas, volumes, packing and protein structure. Annu Rev Biophys Bioeng. 1977;6:151–176. doi: 10.1146/annurev.bb.06.060177.001055. [DOI] [PubMed] [Google Scholar]
  25. Richardson J. M., McMahon K. W., MacDonald C. C., Makhatadze G. I. MEARA sequence repeat of human CstF-64 polyadenylation factor is helical in solution. A spectroscopic and calorimetric study. Biochemistry. 1999 Sep 28;38(39):12869–12875. doi: 10.1021/bi990724r. [DOI] [PubMed] [Google Scholar]
  26. Santoro M. M., Bolen D. W. Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry. 1988 Oct 18;27(21):8063–8068. doi: 10.1021/bi00421a014. [DOI] [PubMed] [Google Scholar]
  27. Scholtz J. M., Marqusee S., Baldwin R. L., York E. J., Stewart J. M., Santoro M., Bolen D. W. Calorimetric determination of the enthalpy change for the alpha-helix to coil transition of an alanine peptide in water. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2854–2858. doi: 10.1073/pnas.88.7.2854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Taylor J. W., Greenfield N. J., Wu B., Privalov P. L. A calorimetric study of the folding-unfolding of an alpha-helix with covalently closed N and C-terminal loops. J Mol Biol. 1999 Aug 27;291(4):965–976. doi: 10.1006/jmbi.1999.3025. [DOI] [PubMed] [Google Scholar]
  29. Yang A. S., Sharp K. A., Honig B. Analysis of the heat capacity dependence of protein folding. J Mol Biol. 1992 Oct 5;227(3):889–900. doi: 10.1016/0022-2836(92)90229-d. [DOI] [PubMed] [Google Scholar]
  30. Yao M., Bolen D. W. How valid are denaturant-induced unfolding free energy measurements? Level of conformance to common assumptions over an extended range of ribonuclease A stability. Biochemistry. 1995 Mar 21;34(11):3771–3781. doi: 10.1021/bi00011a035. [DOI] [PubMed] [Google Scholar]
  31. Yutani K., Ogasahara K., Kuwajima K. Absence of the thermal transition in apo-alpha-lactalbumin in the molten globule state. A study by differential scanning microcalorimetry. J Mol Biol. 1992 Nov 20;228(2):347–350. doi: 10.1016/0022-2836(92)90824-4. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES