Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Jul;9(7):1402–1406. doi: 10.1110/ps.9.7.1402

Structural effects of the active site mutation cysteine to serine in Bacillus cereus zinc-beta-lactamase.

L Chantalat 1, E Duée 1, M Galleni 1, J M Frère 1, O Dideberg 1
PMCID: PMC2144673  PMID: 10933508

Abstract

Beta-lactamases are involved in bacterial resistance. Members of the metallo-enzyme class are now found in many pathogenic bacteria and are becoming thus of major clinical importance. Despite the availability of Zn-beta-lactamase X-ray structures their mechanism of action is still unclear. One puzzling observation is the presence of one or two zincs in the active site. To aid in assessing the role of zinc content in beta-lactam hydrolysis, the replacement by Ser of the zinc-liganding residue Cys168 in the Zn-beta-lactamase from Bacillus cereus strain 569/H/9 was carried out: the mutant enzyme (C168S) is inactive in the mono-Zn form, but active in the di-Zn form. The structure of the mono-Zn form of the C168S mutant has been determined at 1.85 A resolution. Ser168 occupies the same position as Cys168 in the wild-type enzyme. The protein residues mostly affected by the mutation are Asp90-Arg91 and His210. A critical factor for the activity of the mono-Zn species is the distance between Asp90 and the Zn ion, which is controlled by Arg91: a slight movement of Asp90 impairs catalysis. The evolution of a large superfamily including Zn-beta-lactamases suggests that they may not all share the same mechanism.

Full Text

The Full Text of this article is available as a PDF (179.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin G. S., Galdes A., Hill H. A., Smith B. E., Waley S. G., Abraham E. P. Histidine residues of zinc ligands in beta-lactamase II. Biochem J. 1978 Nov 1;175(2):441–447. doi: 10.1042/bj1750441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E. The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235–242. doi: 10.1093/nar/28.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bounaga S., Laws A. P., Galleni M., Page M. I. The mechanism of catalysis and the inhibition of the Bacillus cereus zinc-dependent beta-lactamase. Biochem J. 1998 May 1;331(Pt 3):703–711. doi: 10.1042/bj3310703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bush K. Metallo-beta-lactamases: a class apart. Clin Infect Dis. 1998 Aug;27 (Suppl 1):S48–S53. doi: 10.1086/514922. [DOI] [PubMed] [Google Scholar]
  5. Cameron A. D., Ridderström M., Olin B., Mannervik B. Crystal structure of human glyoxalase II and its complex with a glutathione thiolester substrate analogue. Structure. 1999 Sep 15;7(9):1067–1078. doi: 10.1016/s0969-2126(99)80174-9. [DOI] [PubMed] [Google Scholar]
  6. Carfi A., Duée E., Galleni M., Frère J. M., Dideberg O. 1.85 A resolution structure of the zinc (II) beta-lactamase from Bacillus cereus. Acta Crystallogr D Biol Crystallogr. 1998 May 1;54(Pt 3):313–323. doi: 10.1107/s0907444997010627. [DOI] [PubMed] [Google Scholar]
  7. Carfi A., Pares S., Duée E., Galleni M., Duez C., Frère J. M., Dideberg O. The 3-D structure of a zinc metallo-beta-lactamase from Bacillus cereus reveals a new type of protein fold. EMBO J. 1995 Oct 16;14(20):4914–4921. doi: 10.1002/j.1460-2075.1995.tb00174.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Concha N. O., Rasmussen B. A., Bush K., Herzberg O. Crystal structure of the wide-spectrum binuclear zinc beta-lactamase from Bacteroides fragilis. Structure. 1996 Jul 15;4(7):823–836. doi: 10.1016/s0969-2126(96)00089-5. [DOI] [PubMed] [Google Scholar]
  9. Crowder M. W., Walsh T. R., Banovic L., Pettit M., Spencer J. Overexpression, purification, and characterization of the cloned metallo-beta-lactamase L1 from Stenotrophomonas maltophilia. Antimicrob Agents Chemother. 1998 Apr;42(4):921–926. doi: 10.1128/aac.42.4.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Crowder M. W., Wang Z., Franklin S. L., Zovinka E. P., Benkovic S. J. Characterization of the metal-binding sites of the beta-lactamase from Bacteroides fragilis. Biochemistry. 1996 Sep 17;35(37):12126–12132. doi: 10.1021/bi960976h. [DOI] [PubMed] [Google Scholar]
  11. Fabiane S. M., Sohi M. K., Wan T., Payne D. J., Bateson J. H., Mitchell T., Sutton B. J. Crystal structure of the zinc-dependent beta-lactamase from Bacillus cereus at 1.9 A resolution: binuclear active site with features of a mononuclear enzyme. Biochemistry. 1998 Sep 8;37(36):12404–12411. doi: 10.1021/bi980506i. [DOI] [PubMed] [Google Scholar]
  12. Fitzgerald P. M., Wu J. K., Toney J. H. Unanticipated inhibition of the metallo-beta-lactamase from Bacteroides fragilis by 4-morpholineethanesulfonic acid (MES): a crystallographic study at 1.85-A resolution. Biochemistry. 1998 May 12;37(19):6791–6800. doi: 10.1021/bi9730339. [DOI] [PubMed] [Google Scholar]
  13. Ghuysen J. M. Molecular structures of penicillin-binding proteins and beta-lactamases. Trends Microbiol. 1994 Oct;2(10):372–380. doi: 10.1016/0966-842x(94)90614-9. [DOI] [PubMed] [Google Scholar]
  14. Hernandez Valladares M., Felici A., Weber G., Adolph H. W., Zeppezauer M., Rossolini G. M., Amicosante G., Frère J. M., Galleni M. Zn(II) dependence of the Aeromonas hydrophila AE036 metallo-beta-lactamase activity and stability. Biochemistry. 1997 Sep 23;36(38):11534–11541. doi: 10.1021/bi971056h. [DOI] [PubMed] [Google Scholar]
  15. Joris B., Ghuysen J. M., Dive G., Renard A., Dideberg O., Charlier P., Frère J. M., Kelly J. A., Boyington J. C., Moews P. C. The active-site-serine penicillin-recognizing enzymes as members of the Streptomyces R61 DD-peptidase family. Biochem J. 1988 Mar 1;250(2):313–324. doi: 10.1042/bj2500313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Li Z., Rasmussen B. A., Herzberg O. Structural consequences of the active site substitution Cys181 ==> Ser in metallo-beta-lactamase from Bacteroides fragilis. Protein Sci. 1999 Jan;8(1):249–252. doi: 10.1110/ps.8.1.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Neuwald A. F., Liu J. S., Lipman D. J., Lawrence C. E. Extracting protein alignment models from the sequence database. Nucleic Acids Res. 1997 May 1;25(9):1665–1677. doi: 10.1093/nar/25.9.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Orellano E. G., Girardini J. E., Cricco J. A., Ceccarelli E. A., Vila A. J. Spectroscopic characterization of a binuclear metal site in Bacillus cereus beta-lactamase II. Biochemistry. 1998 Jul 14;37(28):10173–10180. doi: 10.1021/bi980309j. [DOI] [PubMed] [Google Scholar]
  19. Paul-Soto R., Bauer R., Frère J. M., Galleni M., Meyer-Klaucke W., Nolting H., Rossolini G. M., de Seny D., Hernandez-Valladares M., Zeppezauer M. Mono- and binuclear Zn2+-beta-lactamase. Role of the conserved cysteine in the catalytic mechanism. J Biol Chem. 1999 May 7;274(19):13242–13249. doi: 10.1074/jbc.274.19.13242. [DOI] [PubMed] [Google Scholar]
  20. Paul-Soto R., Hernandez-Valladares M., Galleni M., Bauer R., Zeppezauer M., Frère J. M., Adolph H. W. Mono- and binuclear Zn-beta-lactamase from Bacteroides fragilis: catalytic and structural roles of the zinc ions. FEBS Lett. 1998 Oct 30;438(1-2):137–140. doi: 10.1016/s0014-5793(98)01289-7. [DOI] [PubMed] [Google Scholar]
  21. Sträter N., Sun L., Kantrowitz E. R., Lipscomb W. N. A bicarbonate ion as a general base in the mechanism of peptide hydrolysis by dizinc leucine aminopeptidase. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11151–11155. doi: 10.1073/pnas.96.20.11151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ullah J. H., Walsh T. R., Taylor I. A., Emery D. C., Verma C. S., Gamblin S. J., Spencer J. The crystal structure of the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia at 1.7 A resolution. J Mol Biol. 1998 Nov 20;284(1):125–136. doi: 10.1006/jmbi.1998.2148. [DOI] [PubMed] [Google Scholar]
  23. Yang Y., Keeney D., Tang X., Canfield N., Rasmussen B. A. Kinetic properties and metal content of the metallo-beta-lactamase CcrA harboring selective amino acid substitutions. J Biol Chem. 1999 May 28;274(22):15706–15711. doi: 10.1074/jbc.274.22.15706. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES