Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Jul;9(7):1312–1326. doi: 10.1110/ps.9.7.1312

A model of troponin-I in complex with troponin-C using hybrid experimental data: the inhibitory region is a beta-hairpin.

C S Tung 1, M E Wall 1, S C Gallagher 1, J Trewhella 1
PMCID: PMC2144674  PMID: 10933496

Abstract

We present a model for the skeletal muscle troponin-C (TnC)/troponin-I (TnI) interaction, a critical molecular switch that is responsible for calcium-dependent regulation of the contractile mechanism. Despite concerted efforts by multiple groups for more than a decade, attempts to crystallize troponin-C in complex with troponin-I, or in the ternary troponin-complex, have not yet delivered a high-resolution structure. Many groups have pursued different experimental strategies, such as X-ray crystallography, NMR, small-angle scattering, chemical cross-linking, and fluorescent resonance energy transfer (FRET) to gain insights into the nature of the TnC/TnI interaction. We have integrated the results of these experiments to develop a model of the TnC/TnI interaction, using an atomic model of TnC as a scaffold. The TnI sequence was fit to each of two alternate neutron scattering envelopes: one that winds about TnC in a left-handed sense (Model L), and another that winds about TnC in a right-handed sense (Model R). Information from crystallography and NMR experiments was used to define segments of the models. Tests show that both models are consistent with available cross-linking and FRET data. The inhibitory region TnI(95-114) is modeled as a flexible beta-hairpin, and in both models it is localized to the same region on the central helix of TnC. The sequence of the inhibitory region is similar to that of a beta-hairpin region of the actin-binding protein profilin. This similarity supports our model and suggests the possibility of using an available profilin/actin crystal structure to model the TnI/actin interaction. We propose that the beta-hairpin is an important structural motif that communicates the Ca2+-activated troponin regulatory signal to actin.

Full Text

The Full Text of this article is available as a PDF (6.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E. The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235–242. doi: 10.1093/nar/28.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blechner S. L., Olah G. A., Strynadka N. C., Hodges R. S., Trewhella J. 4Ca2+.troponin C forms dimers in solution at neutral pH that dissociate upon binding various peptides: small-angle X-ray scattering studies of peptide-induced structural changes. Biochemistry. 1992 Nov 24;31(46):11326–11334. doi: 10.1021/bi00161a010. [DOI] [PubMed] [Google Scholar]
  3. Campbell A. P., Sykes B. D. Interaction of troponin I and troponin C. Use of the two-dimensional nuclear magnetic resonance transferred nuclear Overhauser effect to determine the structure of the inhibitory troponin I peptide when bound to skeletal troponin C. J Mol Biol. 1991 Nov 20;222(2):405–421. doi: 10.1016/0022-2836(91)90219-v. [DOI] [PubMed] [Google Scholar]
  4. Carlsson L., Nyström L. E., Sundkvist I., Markey F., Lindberg U. Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells. J Mol Biol. 1977 Sep 25;115(3):465–483. doi: 10.1016/0022-2836(77)90166-8. [DOI] [PubMed] [Google Scholar]
  5. Chandra M., McCubbin W. D., Oikawa K., Kay C. M., Smillie L. B. Ca2+, Mg2+, and troponin I inhibitory peptide binding to a Phe-154 to Trp mutant of chicken skeletal muscle troponin C. Biochemistry. 1994 Mar 15;33(10):2961–2969. doi: 10.1021/bi00176a028. [DOI] [PubMed] [Google Scholar]
  6. Dasgupta M., Honeycutt T., Blumenthal D. K. The gamma-subunit of skeletal muscle phosphorylase kinase contains two noncontiguous domains that act in concert to bind calmodulin. J Biol Chem. 1989 Oct 15;264(29):17156–17163. [PubMed] [Google Scholar]
  7. Deléage G., Roux B. An algorithm for protein secondary structure prediction based on class prediction. Protein Eng. 1987 Aug-Sep;1(4):289–294. doi: 10.1093/protein/1.4.289. [DOI] [PubMed] [Google Scholar]
  8. Dormán G., Prestwich G. D. Benzophenone photophores in biochemistry. Biochemistry. 1994 May 17;33(19):5661–5673. doi: 10.1021/bi00185a001. [DOI] [PubMed] [Google Scholar]
  9. Farah C. S., Miyamoto C. A., Ramos C. H., da Silva A. C., Quaggio R. B., Fujimori K., Smillie L. B., Reinach F. C. Structural and regulatory functions of the NH2- and COOH-terminal regions of skeletal muscle troponin I. J Biol Chem. 1994 Feb 18;269(7):5230–5240. [PubMed] [Google Scholar]
  10. Farah C. S., Reinach F. C. The troponin complex and regulation of muscle contraction. FASEB J. 1995 Jun;9(9):755–767. doi: 10.1096/fasebj.9.9.7601340. [DOI] [PubMed] [Google Scholar]
  11. Gagné S. M., Tsuda S., Li M. X., Smillie L. B., Sykes B. D. Structures of the troponin C regulatory domains in the apo and calcium-saturated states. Nat Struct Biol. 1995 Sep;2(9):784–789. doi: 10.1038/nsb0995-784. [DOI] [PubMed] [Google Scholar]
  12. Geourjon C., Deléage G. SOPM: a self-optimized method for protein secondary structure prediction. Protein Eng. 1994 Feb;7(2):157–164. doi: 10.1093/protein/7.2.157. [DOI] [PubMed] [Google Scholar]
  13. Geourjon C., Deléage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci. 1995 Dec;11(6):681–684. doi: 10.1093/bioinformatics/11.6.681. [DOI] [PubMed] [Google Scholar]
  14. Gibbs C. S., Zoller M. J. Rational scanning mutagenesis of a protein kinase identifies functional regions involved in catalysis and substrate interactions. J Biol Chem. 1991 May 15;266(14):8923–8931. [PubMed] [Google Scholar]
  15. Hao M. H., Olson W. K. Modeling DNA supercoils and knots with B-spline functions. Biopolymers. 1989 Apr;28(4):873–900. doi: 10.1002/bip.360280407. [DOI] [PubMed] [Google Scholar]
  16. Heidorn D. B., Trewhella J. Comparison of the crystal and solution structures of calmodulin and troponin C. Biochemistry. 1988 Feb 9;27(3):909–915. doi: 10.1021/bi00403a011. [DOI] [PubMed] [Google Scholar]
  17. Hernández G., Blumenthal D. K., Kennedy M. A., Unkefer C. J., Trewhella J. Troponin I inhibitory peptide (96-115) has an extended conformation when bound to skeletal muscle troponin C. Biochemistry. 1999 May 25;38(21):6911–6917. doi: 10.1021/bi990150q. [DOI] [PubMed] [Google Scholar]
  18. Herzberg O., James M. N. Refined crystal structure of troponin C from turkey skeletal muscle at 2.0 A resolution. J Mol Biol. 1988 Oct 5;203(3):761–779. doi: 10.1016/0022-2836(88)90208-2. [DOI] [PubMed] [Google Scholar]
  19. Herzberg O., James M. N. Structure of the calcium regulatory muscle protein troponin-C at 2.8 A resolution. Nature. 1985 Feb 21;313(6004):653–659. doi: 10.1038/313653a0. [DOI] [PubMed] [Google Scholar]
  20. Herzberg O., Moult J., James M. N. A model for the Ca2+-induced conformational transition of troponin C. A trigger for muscle contraction. J Biol Chem. 1986 Feb 25;261(6):2638–2644. [PubMed] [Google Scholar]
  21. Houdusse A., Love M. L., Dominguez R., Grabarek Z., Cohen C. Structures of four Ca2+-bound troponin C at 2.0 A resolution: further insights into the Ca2+-switch in the calmodulin superfamily. Structure. 1997 Dec 15;5(12):1695–1711. doi: 10.1016/s0969-2126(97)00315-8. [DOI] [PubMed] [Google Scholar]
  22. Ikura M. Calcium binding and conformational response in EF-hand proteins. Trends Biochem Sci. 1996 Jan;21(1):14–17. [PubMed] [Google Scholar]
  23. Jha P. K., Mao C., Sarkar S. Photo-cross-linking of rabbit skeletal troponin I deletion mutants with troponin C and its thiol mutants: the inhibitory region enhances binding of troponin I fragments to troponin C. Biochemistry. 1996 Aug 27;35(34):11026–11035. doi: 10.1021/bi960406h. [DOI] [PubMed] [Google Scholar]
  24. Kobayashi T., Leavis P. C., Collins J. H. Interaction of a troponin I inhibitory peptide with both domains of troponin C. Biochim Biophys Acta. 1996 May 2;1294(1):25–30. doi: 10.1016/0167-4838(95)00258-8. [DOI] [PubMed] [Google Scholar]
  25. Kobayashi T., Tao T., Gergely J., Collins J. H. Structure of the troponin complex. Implications of photocross-linking of troponin I to troponin C thiol mutants. J Biol Chem. 1994 Feb 25;269(8):5725–5729. [PubMed] [Google Scholar]
  26. Kobayashi T., Tao T., Grabarek Z., Gergely J., Collins J. H. Cross-linking of residue 57 in the regulatory domain of a mutant rabbit skeletal muscle troponin C to the inhibitory region of troponin I. J Biol Chem. 1991 Jul 25;266(21):13746–13751. [PubMed] [Google Scholar]
  27. Kobayashi T., Zhao X., Wade R., Collins J. H. Ca2+-dependent interaction of the inhibitory region of troponin I with acidic residues in the N-terminal domain of troponin C. Biochim Biophys Acta. 1999 Mar 19;1430(2):214–221. doi: 10.1016/s0167-4838(99)00002-3. [DOI] [PubMed] [Google Scholar]
  28. Kretsinger R. H. Calcium-binding proteins. Annu Rev Biochem. 1976;45:239–266. doi: 10.1146/annurev.bi.45.070176.001323. [DOI] [PubMed] [Google Scholar]
  29. Krudy G. A., Kleerekoper Q., Guo X., Howarth J. W., Solaro R. J., Rosevear P. R. NMR studies delineating spatial relationships within the cardiac troponin I-troponin C complex. J Biol Chem. 1994 Sep 23;269(38):23731–23735. [PubMed] [Google Scholar]
  30. Leszyk J., Collins J. H., Leavis P. C., Tao T. Cross-linking of rabbit skeletal muscle troponin subunits: labeling of cysteine-98 of troponin C with 4-maleimidobenzophenone and analysis of products formed in the binary complex with troponin T and the ternary complex with troponins I and T. Biochemistry. 1988 Sep 6;27(18):6983–6987. doi: 10.1021/bi00418a047. [DOI] [PubMed] [Google Scholar]
  31. Leszyk J., Collins J. H., Leavis P. C., Tao T. Cross-linking of rabbit skeletal muscle troponin with the photoactive reagent 4-maleimidobenzophenone: identification of residues in troponin I that are close to cysteine-98 of troponin C. Biochemistry. 1987 Nov 3;26(22):7042–7047. doi: 10.1021/bi00396a028. [DOI] [PubMed] [Google Scholar]
  32. Leszyk J., Grabarek Z., Gergely J., Collins J. H. Characterization of zero-length cross-links between rabbit skeletal muscle troponin C and troponin I: evidence for direct interaction between the inhibitory region of troponin I and the NH2-terminal, regulatory domain of troponin C. Biochemistry. 1990 Jan 9;29(1):299–304. doi: 10.1021/bi00453a041. [DOI] [PubMed] [Google Scholar]
  33. Leszyk J., Tao T., Nuwaysir L. M., Gergely J. Identification of the photocrosslinking sites in troponin-I with 4-maleimidobenzophenone labelled mutant troponin-Cs having single cysteines at positions 158 and 21. J Muscle Res Cell Motil. 1998 Jun;19(5):479–490. doi: 10.1023/a:1005352324741. [DOI] [PubMed] [Google Scholar]
  34. Levin J. M., Robson B., Garnier J. An algorithm for secondary structure determination in proteins based on sequence similarity. FEBS Lett. 1986 Sep 15;205(2):303–308. doi: 10.1016/0014-5793(86)80917-6. [DOI] [PubMed] [Google Scholar]
  35. Li M. X., Spyracopoulos L., Sykes B. D. Binding of cardiac troponin-I147-163 induces a structural opening in human cardiac troponin-C. Biochemistry. 1999 Jun 29;38(26):8289–8298. doi: 10.1021/bi9901679. [DOI] [PubMed] [Google Scholar]
  36. Luo Y., Leszyk J., Qian Y., Gergely J., Tao T. Residues 48 and 82 at the N-terminal hydrophobic pocket of rabbit skeletal muscle troponin-C photo-cross-link to Met121 of troponin-I. Biochemistry. 1999 May 18;38(20):6678–6688. doi: 10.1021/bi9824341. [DOI] [PubMed] [Google Scholar]
  37. Luo Y., Wu J. L., Gergely J., Tao T. Localization of Cys133 of rabbit skeletal troponin-I with respect to troponin-C by resonance energy transfer. Biophys J. 1998 Jun;74(6):3111–3119. doi: 10.1016/S0006-3495(98)78017-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Luo Y., Wu J. L., Gergely J., Tao T. Troponin T and Ca2+ dependence of the distance between Cys48 and Cys133 of troponin I in the ternary troponin complex and reconstituted thin filaments. Biochemistry. 1997 Sep 9;36(36):11027–11035. doi: 10.1021/bi962461w. [DOI] [PubMed] [Google Scholar]
  39. Luo Y., Wu J. L., Li B., Langsetmo K., Gergely J., Tao T. Photocrosslinking of benzophenone-labeled single cysteine troponin I mutants to other thin filament proteins. J Mol Biol. 2000 Feb 25;296(3):899–910. doi: 10.1006/jmbi.1999.3495. [DOI] [PubMed] [Google Scholar]
  40. McKay R. T., Pearlstone J. R., Corson D. C., Gagné S. M., Smillie L. B., Sykes B. D. Structure and interaction site of the regulatory domain of troponin-C when complexed with the 96-148 region of troponin-I. Biochemistry. 1998 Sep 8;37(36):12419–12430. doi: 10.1021/bi9809019. [DOI] [PubMed] [Google Scholar]
  41. McKay R. T., Tripet B. P., Hodges R. S., Sykes B. D. Interaction of the second binding region of troponin I with the regulatory domain of skeletal muscle troponin C as determined by NMR spectroscopy. J Biol Chem. 1997 Nov 7;272(45):28494–28500. doi: 10.1074/jbc.272.45.28494. [DOI] [PubMed] [Google Scholar]
  42. McKay R. T., Tripet B. P., Pearlstone J. R., Smillie L. B., Sykes B. D. Defining the region of troponin-I that binds to troponin-C. Biochemistry. 1999 Apr 27;38(17):5478–5489. doi: 10.1021/bi9829736. [DOI] [PubMed] [Google Scholar]
  43. Ngai S. M., Sönnichsen F. D., Hodges R. S. Photochemical cross-linking between native rabbit skeletal troponin C and benzoylbenzoyl-troponin I inhibitory peptide, residues 104-115. J Biol Chem. 1994 Jan 21;269(3):2165–2172. [PubMed] [Google Scholar]
  44. Nodelman I. M., Bowman G. D., Lindberg U., Schutt C. E. X-ray structure determination of human profilin II: A comparative structural analysis of human profilins. J Mol Biol. 1999 Dec 17;294(5):1271–1285. doi: 10.1006/jmbi.1999.3318. [DOI] [PubMed] [Google Scholar]
  45. Olah G. A., Rokop S. E., Wang C. L., Blechner S. L., Trewhella J. Troponin I encompasses an extended troponin C in the Ca(2+)-bound complex: a small-angle X-ray and neutron scattering study. Biochemistry. 1994 Jul 12;33(27):8233–8239. doi: 10.1021/bi00193a009. [DOI] [PubMed] [Google Scholar]
  46. Olah G. A., Trewhella J. A model structure of the muscle protein complex 4Ca2+.troponin C.troponin I derived from small-angle scattering data: implications for regulation. Biochemistry. 1994 Nov 1;33(43):12800–12806. doi: 10.1021/bi00209a011. [DOI] [PubMed] [Google Scholar]
  47. Paudel H. K., Carlson G. M. Functional and structural similarities between the inhibitory region of troponin I coded by exon VII and the calmodulin-binding regulatory region of the catalytic subunit of phosphorylase kinase. Proc Natl Acad Sci U S A. 1990 Sep;87(18):7285–7289. doi: 10.1073/pnas.87.18.7285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Pearlstone J. R., Smillie L. B. Evidence for two-site binding of troponin I inhibitory peptides to the N and C domains of troponin C. Biochemistry. 1995 May 30;34(21):6932–6940. doi: 10.1021/bi00021a004. [DOI] [PubMed] [Google Scholar]
  49. Pearlstone J. R., Smillie L. B. The interaction of rabbit skeletal muscle troponin-T fragments with troponin-I. Can J Biochem Cell Biol. 1985 Mar;63(3):212–218. doi: 10.1139/o85-030. [DOI] [PubMed] [Google Scholar]
  50. Pearlstone J. R., Sykes B. D., Smillie L. B. Interactions of structural C and regulatory N domains of troponin C with repeated sequence motifs in troponin I. Biochemistry. 1997 Jun 17;36(24):7601–7606. doi: 10.1021/bi970200w. [DOI] [PubMed] [Google Scholar]
  51. Perry S. V. Troponin I: inhibitor or facilitator. Mol Cell Biochem. 1999 Jan;190(1-2):9–32. [PubMed] [Google Scholar]
  52. Persechini A., Blumenthal D. K., Jarrett H. W., Klee C. B., Hardy D. O., Kretsinger R. H. The effects of deletions in the central helix of calmodulin on enzyme activation and peptide binding. J Biol Chem. 1989 May 15;264(14):8052–8058. [PubMed] [Google Scholar]
  53. Persechini A., Kretsinger R. H. The central helix of calmodulin functions as a flexible tether. J Biol Chem. 1988 Sep 5;263(25):12175–12178. [PubMed] [Google Scholar]
  54. Potter J. D., Gergely J. The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar adenosine triphosphatase. J Biol Chem. 1975 Jun 25;250(12):4628–4633. [PubMed] [Google Scholar]
  55. Ramakrishnan S., Hitchcock-DeGregori S. E. Investigation of the structural requirements of the troponin C central helix for function. Biochemistry. 1995 Dec 26;34(51):16789–16796. doi: 10.1021/bi00051a029. [DOI] [PubMed] [Google Scholar]
  56. Rost B., Sander C. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins. 1994 May;19(1):55–72. doi: 10.1002/prot.340190108. [DOI] [PubMed] [Google Scholar]
  57. Ryu K., Lee H., Kim S., Beauchamp J., Tung C. S., Isaacs N. W., Ji I., Ji T. H. Modulation of high affinity hormone binding. Human choriogonadotropin binding to the exodomain of the receptor is influenced by exoloop 2 of the receptor. J Biol Chem. 1998 Mar 13;273(11):6285–6291. doi: 10.1074/jbc.273.11.6285. [DOI] [PubMed] [Google Scholar]
  58. Satyshur K. A., Rao S. T., Pyzalska D., Drendel W., Greaser M., Sundaralingam M. Refined structure of chicken skeletal muscle troponin C in the two-calcium state at 2-A resolution. J Biol Chem. 1988 Feb 5;263(4):1628–1647. [PubMed] [Google Scholar]
  59. Schutt C. E., Myslik J. C., Rozycki M. D., Goonesekere N. C., Lindberg U. The structure of crystalline profilin-beta-actin. Nature. 1993 Oct 28;365(6449):810–816. doi: 10.1038/365810a0. [DOI] [PubMed] [Google Scholar]
  60. Soman J., Tao T., Phillips G. N., Jr Conformational variation of calcium-bound troponin C. Proteins. 1999 Dec 1;37(4):510–511. doi: 10.1002/(sici)1097-0134(19991201)37:4<510::aid-prot2>3.0.co;2-t. [DOI] [PubMed] [Google Scholar]
  61. Stefancsik R., Jha P. K., Sarkar S. Identification and mutagenesis of a highly conserved domain in troponin T responsible for troponin I binding: potential role for coiled coil interaction. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):957–962. doi: 10.1073/pnas.95.3.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Stone D. B., Timmins P. A., Schneider D. K., Krylova I., Ramos C. H., Reinach F. C., Mendelson R. A. The effect of regulatory Ca2+ on the in situ structures of troponin C and troponin I: a neutron scattering study. J Mol Biol. 1998 Aug 28;281(4):689–704. doi: 10.1006/jmbi.1998.1965. [DOI] [PubMed] [Google Scholar]
  63. Strynadka N. C., Cherney M., Sielecki A. R., Li M. X., Smillie L. B., James M. N. Structural details of a calcium-induced molecular switch: X-ray crystallographic analysis of the calcium-saturated N-terminal domain of troponin C at 1.75 A resolution. J Mol Biol. 1997 Oct 17;273(1):238–255. doi: 10.1006/jmbi.1997.1257. [DOI] [PubMed] [Google Scholar]
  64. Syska H., Wilkinson J. M., Grand R. J., Perry S. V. The relationship between biological activity and primary structure of troponin I from white skeletal muscle of the rabbit. Biochem J. 1976 Feb 1;153(2):375–387. doi: 10.1042/bj1530375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Szczesna D., Zhang R., Zhao J., Jones M., Potter J. D. The role of the NH(2)- and COOH-terminal domains of the inhibitory region of troponin I in the regulation of skeletal muscle contraction. J Biol Chem. 1999 Oct 8;274(41):29536–29542. doi: 10.1074/jbc.274.41.29536. [DOI] [PubMed] [Google Scholar]
  66. Tao T., Gong B. J., Leavis P. C. Calcium-induced movement of troponin-I relative to actin in skeletal muscle thin filaments. Science. 1990 Mar 16;247(4948):1339–1341. doi: 10.1126/science.2138356. [DOI] [PubMed] [Google Scholar]
  67. Tao T., Gowell E., Strasburg G. M., Gergely J., Leavis P. C. Ca2+ dependence of the distance between Cys-98 of troponin C and Cys-133 of troponin I in the ternary troponin complex. Resonance energy transfer measurements. Biochemistry. 1989 Jul 11;28(14):5902–5908. doi: 10.1021/bi00440a029. [DOI] [PubMed] [Google Scholar]
  68. Tobacman L. S. Thin filament-mediated regulation of cardiac contraction. Annu Rev Physiol. 1996;58:447–481. doi: 10.1146/annurev.ph.58.030196.002311. [DOI] [PubMed] [Google Scholar]
  69. Trewhella J., Blumenthal D. K., Rokop S. E., Seeger P. A. Small-angle scattering studies show distinct conformations of calmodulin in its complexes with two peptides based on the regulatory domain of the catalytic subunit of phosphorylase kinase. Biochemistry. 1990 Oct 9;29(40):9316–9324. doi: 10.1021/bi00492a003. [DOI] [PubMed] [Google Scholar]
  70. Tripet B., Van Eyk J. E., Hodges R. S. Mapping of a second actin-tropomyosin and a second troponin C binding site within the C terminus of troponin I, and their importance in the Ca2+-dependent regulation of muscle contraction. J Mol Biol. 1997 Sep 5;271(5):728–750. doi: 10.1006/jmbi.1997.1200. [DOI] [PubMed] [Google Scholar]
  71. Tung C. S. A computational approach to modeling nucleic acid hairpin structures. Biophys J. 1997 Feb;72(2 Pt 1):876–885. doi: 10.1016/s0006-3495(97)78722-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Tung C. S., Soumpasis D. M. The construction of DNA helical duplexes along prescribed 3-D curves. J Biomol Struct Dyn. 1995 Dec;13(3):577–582. doi: 10.1080/07391102.1995.10508868. [DOI] [PubMed] [Google Scholar]
  73. Van Eyk J. E., Strauss J. D., Hodges R. S., Rüegg J. C. A synthetic peptide mimics troponin I function in the calcium-dependent regulation of muscle contraction. FEBS Lett. 1993 Jun 1;323(3):223–228. doi: 10.1016/0014-5793(93)81344-y. [DOI] [PubMed] [Google Scholar]
  74. Vassylyev D. G., Takeda S., Wakatsuki S., Maeda K., Maéda Y. Crystal structure of troponin C in complex with troponin I fragment at 2.3-A resolution. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4847–4852. doi: 10.1073/pnas.95.9.4847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Wall M. E., Subramaniam S., Phillips G. N., Jr Protein structure determination using a database of interatomic distance probabilities. Protein Sci. 1999 Dec;8(12):2720–2727. doi: 10.1110/ps.8.12.2720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Wilkinson J. M., Grand R. J. Comparison of amino acid sequence of troponin I from different striated muscles. Nature. 1978 Jan 5;271(5640):31–35. doi: 10.1038/271031a0. [DOI] [PubMed] [Google Scholar]
  77. Xu G. Q., Hitchcock-DeGregori S. E. Synthesis of a troponin C cDNA and expression of wild-type and mutant proteins in Escherichia coli. J Biol Chem. 1988 Sep 25;263(27):13962–13969. [PubMed] [Google Scholar]
  78. Zhao X., Kobayashi T., Gryczynski Z., Gryczynski I., Lakowicz J., Wade R., Collins J. H. Calcium-induced flexibility changes in the troponin C-troponin I complex. Biochim Biophys Acta. 2000 Jun 15;1479(1-2):247–254. doi: 10.1016/s0167-4838(00)00026-1. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES