Abstract
The disulfide bond pattern of catrocollastatin-C was determined by N-terminal sequencing and mass spectrometry. The N-terminal disintegrin-like domain is a compact structure including eight disulfide bonds, seven of them in the same pattern as the disintegrin bitistatin. The protein has two extra cysteine residues (XIII and XVI) that form an additional disulfide bond that is characteristically found in the disintegrin-like domains of cellular metalloproteinases (ADAMs) and PIII snake venom Zn-metalloproteinases (SVMPs). The C-terminal cysteine-rich domain of catrocollastatin-C contains five disulfide bonds between nearest-neighbor cysteines and a long range disulfide bridge between CysV and CysX. These results provide structural evidence for a redefinition of the disintegrin-like and cysteine-rich domain boundaries. An evolutionary pathway for ADAMs, PIII, and PII SVMPs based on disulfide bond engineering is also proposed.
Full Text
The Full Text of this article is available as a PDF (441.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adler M., Lazarus R. A., Dennis M. S., Wagner G. Solution structure of kistrin, a potent platelet aggregation inhibitor and GP IIb-IIIa antagonist. Science. 1991 Jul 26;253(5018):445–448. doi: 10.1126/science.1862345. [DOI] [PubMed] [Google Scholar]
- Au L. C., Huang Y. B., Huang T. F., Teh G. W., Lin H. H., Choo K. B. A common precursor for a putative hemorrhagic protein and rhodostomin, a platelet aggregation inhibitor of the venom of Calloselasma rhodostoma: molecular cloning and sequence analysis. Biochem Biophys Res Commun. 1991 Dec 16;181(2):585–593. doi: 10.1016/0006-291x(91)91230-a. [DOI] [PubMed] [Google Scholar]
- Baramova E. N., Shannon J. D., Bjarnason J. B., Fox J. W. Degradation of extracellular matrix proteins by hemorrhagic metalloproteinases. Arch Biochem Biophys. 1989 Nov 15;275(1):63–71. doi: 10.1016/0003-9861(89)90350-0. [DOI] [PubMed] [Google Scholar]
- Bauer M., Sun Y., Degenhardt C., Kozikowski B. Assignment of all four disulfide bridges in echistatin. J Protein Chem. 1993 Dec;12(6):759–764. doi: 10.1007/BF01024934. [DOI] [PubMed] [Google Scholar]
- Bjarnason J. B., Fox J. W. Hemorrhagic metalloproteinases from snake venoms. Pharmacol Ther. 1994;62(3):325–372. doi: 10.1016/0163-7258(94)90049-3. [DOI] [PubMed] [Google Scholar]
- Bjarnason J. B., Fox J. W. Snake venom metalloendopeptidases: reprolysins. Methods Enzymol. 1995;248:345–368. doi: 10.1016/0076-6879(95)48023-4. [DOI] [PubMed] [Google Scholar]
- Black R. A., Rauch C. T., Kozlosky C. J., Peschon J. J., Slack J. L., Wolfson M. F., Castner B. J., Stocking K. L., Reddy P., Srinivasan S. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature. 1997 Feb 20;385(6618):729–733. doi: 10.1038/385729a0. [DOI] [PubMed] [Google Scholar]
- Blobel C. P., Wolfsberg T. G., Turck C. W., Myles D. G., Primakoff P., White J. M. A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion. Nature. 1992 Mar 19;356(6366):248–252. doi: 10.1038/356248a0. [DOI] [PubMed] [Google Scholar]
- Calvete J. J., Schrader M., Raida M., McLane M. A., Romero A., Niewiarowski S. The disulphide bond pattern of bitistatin, a disintegrin isolated from the venom of the viper Bitis arietans. FEBS Lett. 1997 Oct 20;416(2):197–202. doi: 10.1016/s0014-5793(97)01203-9. [DOI] [PubMed] [Google Scholar]
- Calvete J. J., Schäfer W., Soszka T., Lu W. Q., Cook J. J., Jameson B. A., Niewiarowski S. Identification of the disulfide bond pattern in albolabrin, an RGD-containing peptide from the venom of Trimeresurus albolabris: significance for the expression of platelet aggregation inhibitory activity. Biochemistry. 1991 May 28;30(21):5225–5229. doi: 10.1021/bi00235a016. [DOI] [PubMed] [Google Scholar]
- Calvete J. J., Wang Y., Mann K., Schäfer W., Niewiarowski S., Stewart G. J. The disulfide bridge pattern of snake venom disintegrins, flavoridin and echistatin. FEBS Lett. 1992 Sep 14;309(3):316–320. doi: 10.1016/0014-5793(92)80797-k. [DOI] [PubMed] [Google Scholar]
- Chen H., Pyluck A. L., Janik M., Sampson N. S. Peptides corresponding to the epidermal growth factor-like domain of mouse fertilin: synthesis and biological activity. Biopolymers. 1998;47(4):299–307. doi: 10.1002/(SICI)1097-0282(1998)47:4<299::AID-BIP5>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
- Chen H., Sampson N. S. Mediation of sperm-egg fusion: evidence that mouse egg alpha6beta1 integrin is the receptor for sperm fertilinbeta. Chem Biol. 1999 Jan;6(1):1–10. doi: 10.1016/S1074-5521(99)80015-5. [DOI] [PubMed] [Google Scholar]
- Cho C., Bunch D. O., Faure J. E., Goulding E. H., Eddy E. M., Primakoff P., Myles D. G. Fertilization defects in sperm from mice lacking fertilin beta. Science. 1998 Sep 18;281(5384):1857–1859. doi: 10.1126/science.281.5384.1857. [DOI] [PubMed] [Google Scholar]
- Evans J. P., Schultz R. M., Kopf G. S. Mouse sperm-egg plasma membrane interactions: analysis of roles of egg integrins and the mouse sperm homologue of PH-30 (fertilin) beta. J Cell Sci. 1995 Oct;108(Pt 10):3267–3278. doi: 10.1242/jcs.108.10.3267. [DOI] [PubMed] [Google Scholar]
- Evans J. P., Schultz R. M., Kopf G. S. Roles of the disintegrin domains of mouse fertilins alpha and beta in fertilization. Biol Reprod. 1998 Jul;59(1):145–152. doi: 10.1095/biolreprod59.1.145. [DOI] [PubMed] [Google Scholar]
- Gichuhi P. M., Ford W. C., Hall L. Evidence that peptides derived from the disintegrin domain of primate fertilin and containing the ECD motif block the binding of human spermatozoa to the zona-free hamster oocyte. Int J Androl. 1997 Jun;20(3):165–170. doi: 10.1046/j.1365-2605.1997.00058.x. [DOI] [PubMed] [Google Scholar]
- Hite L. A., Jia L. G., Bjarnason J. B., Fox J. W. cDNA sequences for four snake venom metalloproteinases: structure, classification, and their relationship to mammalian reproductive proteins. Arch Biochem Biophys. 1994 Jan;308(1):182–191. doi: 10.1006/abbi.1994.1026. [DOI] [PubMed] [Google Scholar]
- Iba K., Albrechtsen R., Gilpin B. J., Loechel F., Wewer U. M. Cysteine-rich domain of human ADAM 12 (meltrin alpha) supports tumor cell adhesion. Am J Pathol. 1999 May;154(5):1489–1501. doi: 10.1016/s0002-9440(10)65403-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ivaska J., Käpylä J., Pentikäinen O., Hoffrén A. M., Hermonen J., Huttunen P., Johnson M. S., Heino J. A peptide inhibiting the collagen binding function of integrin alpha2I domain. J Biol Chem. 1999 Feb 5;274(6):3513–3521. doi: 10.1074/jbc.274.6.3513. [DOI] [PubMed] [Google Scholar]
- Jia L. G., Shimokawa K., Bjarnason J. B., Fox J. W. Snake venom metalloproteinases: structure, function and relationship to the ADAMs family of proteins. Toxicon. 1996 Nov-Dec;34(11-12):1269–1276. doi: 10.1016/s0041-0101(96)00108-0. [DOI] [PubMed] [Google Scholar]
- Jia L. G., Wang X. M., Shannon J. D., Bjarnason J. B., Fox J. W. Function of disintegrin-like/cysteine-rich domains of atrolysin A. Inhibition of platelet aggregation by recombinant protein and peptide antagonists. J Biol Chem. 1997 May 16;272(20):13094–13102. doi: 10.1074/jbc.272.20.13094. [DOI] [PubMed] [Google Scholar]
- Jia L. G., Wang X. M., Shannon J. D., Bjarnason J. B., Fox J. W. Inhibition of platelet aggregation by the recombinant cysteine-rich domain of the hemorrhagic snake venom metalloproteinase, atrolysin A. Arch Biochem Biophys. 2000 Jan 1;373(1):281–286. doi: 10.1006/abbi.1999.1517. [DOI] [PubMed] [Google Scholar]
- Kini R. M., Evans H. J. Structural domains in venom proteins: evidence that metalloproteinases and nonenzymatic platelet aggregation inhibitors (disintegrins) from snake venoms are derived by proteolysis from a common precursor. Toxicon. 1992 Mar;30(3):265–293. doi: 10.1016/0041-0101(92)90869-7. [DOI] [PubMed] [Google Scholar]
- Klaus W., Broger C., Gerber P., Senn H. Determination of the disulphide bonding pattern in proteins by local and global analysis of nuclear magnetic resonance data. Application to flavoridin. J Mol Biol. 1993 Aug 5;232(3):897–906. doi: 10.1006/jmbi.1993.1438. [DOI] [PubMed] [Google Scholar]
- Marcinkiewicz C., Calvete J. J., Marcinkiewicz M. M., Raida M., Vijay-Kumar S., Huang Z., Lobb R. R., Niewiarowski S. EC3, a novel heterodimeric disintegrin from Echis carinatus venom, inhibits alpha4 and alpha5 integrins in an RGD-independent manner. J Biol Chem. 1999 Apr 30;274(18):12468–12473. doi: 10.1074/jbc.274.18.12468. [DOI] [PubMed] [Google Scholar]
- Marcinkiewicz C., Calvete J. J., Vijay-Kumar S., Marcinkiewicz M. M., Raida M., Schick P., Lobb R. R., Niewiarowski S. Structural and functional characterization of EMF10, a heterodimeric disintegrin from Eristocophis macmahoni venom that selectively inhibits alpha 5 beta 1 integrin. Biochemistry. 1999 Oct 5;38(40):13302–13309. doi: 10.1021/bi9906930. [DOI] [PubMed] [Google Scholar]
- Markland F. S. Snake venoms and the hemostatic system. Toxicon. 1998 Dec;36(12):1749–1800. doi: 10.1016/s0041-0101(98)00126-3. [DOI] [PubMed] [Google Scholar]
- McLane M. A., Marcinkiewicz C., Vijay-Kumar S., Wierzbicka-Patynowski I., Niewiarowski S. Viper venom disintegrins and related molecules. Proc Soc Exp Biol Med. 1998 Nov;219(2):109–119. doi: 10.3181/00379727-219-44322. [DOI] [PubMed] [Google Scholar]
- McLane M. A., Vijay-Kumar S., Marcinkiewicz C., Calvete J. J., Niewiarowski S. Importance of the structure of the RGD-containing loop in the disintegrins echistatin and eristostatin for recognition of alpha IIb beta 3 and alpha v beta 3 integrins. FEBS Lett. 1996 Aug 5;391(1-2):139–143. doi: 10.1016/0014-5793(96)00716-8. [DOI] [PubMed] [Google Scholar]
- Moss M. L., Jin S. L., Milla M. E., Bickett D. M., Burkhart W., Carter H. L., Chen W. J., Clay W. C., Didsbury J. R., Hassler D. Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature. 1997 Feb 20;385(6618):733–736. doi: 10.1038/385733a0. [DOI] [PubMed] [Google Scholar]
- Moura-da-Silva A. M., Theakston R. D., Crampton J. M. Evolution of disintegrin cysteine-rich and mammalian matrix-degrading metalloproteinases: gene duplication and divergence of a common ancestor rather than convergent evolution. J Mol Evol. 1996 Sep;43(3):263–269. doi: 10.1007/BF02338834. [DOI] [PubMed] [Google Scholar]
- Niewiarowski S., McLane M. A., Kloczewiak M., Stewart G. J. Disintegrins and other naturally occurring antagonists of platelet fibrinogen receptors. Semin Hematol. 1994 Oct;31(4):289–300. [PubMed] [Google Scholar]
- Paine M. J., Desmond H. P., Theakston R. D., Crampton J. M. Purification, cloning, and molecular characterization of a high molecular weight hemorrhagic metalloprotease, jararhagin, from Bothrops jararaca venom. Insights into the disintegrin gene family. J Biol Chem. 1992 Nov 15;267(32):22869–22876. [PubMed] [Google Scholar]
- Perry A. C., Jones R., Barker P. J., Hall L. A mammalian epididymal protein with remarkable sequence similarity to snake venom haemorrhagic peptides. Biochem J. 1992 Sep 15;286(Pt 3):671–675. doi: 10.1042/bj2860671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rawlings N. D., Barrett A. J. Evolutionary families of metallopeptidases. Methods Enzymol. 1995;248:183–228. doi: 10.1016/0076-6879(95)48015-3. [DOI] [PubMed] [Google Scholar]
- Shimokawa K., Jia L. G., Shannon J. D., Fox J. W. Isolation, sequence analysis, and biological activity of atrolysin E/D, the non-RGD disintegrin domain from Crotalus atrox venom. Arch Biochem Biophys. 1998 Jun 15;354(2):239–246. doi: 10.1006/abbi.1998.0698. [DOI] [PubMed] [Google Scholar]
- Shimokawa K., Jia L. G., Wang X. M., Fox J. W. Expression, activation, and processing of the recombinant snake venom metalloproteinase, pro-atrolysin E. Arch Biochem Biophys. 1996 Nov 15;335(2):283–294. doi: 10.1006/abbi.1996.0509. [DOI] [PubMed] [Google Scholar]
- Shimokawa K., Shannon J. D., Jia L. G., Fox J. W. Sequence and biological activity of catrocollastatin-C: a disintegrin-like/cysteine-rich two-domain protein from Crotalus atrox venom. Arch Biochem Biophys. 1997 Jul 1;343(1):35–43. doi: 10.1006/abbi.1997.0133. [DOI] [PubMed] [Google Scholar]
- Smith K. J., Jaseja M., Lu X., Williams J. A., Hyde E. I., Trayer I. P. Three-dimensional structure of the RGD-containing snake toxin albolabrin in solution, based on 1H NMR spectroscopy and simulated annealing calculations. Int J Pept Protein Res. 1996 Sep;48(3):220–228. doi: 10.1111/j.1399-3011.1996.tb00835.x. [DOI] [PubMed] [Google Scholar]
- Stone A. L., Kroeger M., Sang Q. X. Structure-function analysis of the ADAM family of disintegrin-like and metalloproteinase-containing proteins (review). J Protein Chem. 1999 May;18(4):447–465. doi: 10.1023/a:1020692710029. [DOI] [PubMed] [Google Scholar]
- Takeya H., Oda K., Miyata T., Omori-Satoh T., Iwanaga S. The complete amino acid sequence of the high molecular mass hemorrhagic protein HR1B isolated from the venom of Trimeresurus flavoviridis. J Biol Chem. 1990 Sep 25;265(27):16068–16073. [PubMed] [Google Scholar]
- Tsai I. H., Wang Y. M., Lee Y. H. Characterization of a cDNA encoding the precursor of platelet aggregation inhibition and metalloproteinase from Trimeresurus mucrosquamatus venom. Biochim Biophys Acta. 1994 Aug 18;1200(3):337–340. doi: 10.1016/0304-4165(94)90177-5. [DOI] [PubMed] [Google Scholar]
- Wolfsberg T. G., White J. M. ADAMs in fertilization and development. Dev Biol. 1996 Dec 15;180(2):389–401. doi: 10.1006/dbio.1996.0313. [DOI] [PubMed] [Google Scholar]
- Zhang X. P., Kamata T., Yokoyama K., Puzon-McLaughlin W., Takada Y. Specific interaction of the recombinant disintegrin-like domain of MDC-15 (metargidin, ADAM-15) with integrin alphavbeta3. J Biol Chem. 1998 Mar 27;273(13):7345–7350. doi: 10.1074/jbc.273.13.7345. [DOI] [PubMed] [Google Scholar]
- Zhou Q., Smith J. B., Grossman M. H. Molecular cloning and expression of catrocollastatin, a snake-venom protein from Crotalus atrox (western diamondback rattlesnake) which inhibits platelet adhesion to collagen. Biochem J. 1995 Apr 15;307(Pt 2):411–417. doi: 10.1042/bj3070411. [DOI] [PMC free article] [PubMed] [Google Scholar]