Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Jul;9(7):1265–1273. doi: 10.1110/ps.9.7.1265

Structural requirements of pyrroloquinoline quinone dependent enzymatic reactions.

A Oubrie 1, B W Dijkstra 1
PMCID: PMC2144678  PMID: 10933491

Abstract

On the basis of crystal structures of the pyrroloquinoline quinone (PQQ) dependent enzymes methanol dehydrogenase (MDH) and soluble glucose dehydrogenase (s-GDH), different catalytic mechanisms have been proposed. However, several lines of biochemical and kinetic evidence are strikingly similar for both enzymes. To resolve this discrepancy, we have compared the structures of these enzymes in complex with their natural substrates in an attempt to bring them in line with a single reaction mechanism. In both proteins, PQQ is located in the center of the molecule near the axis of pseudo-symmetry. In spite of the absence of significant sequence homology, the overall binding of PQQ in the respective active sites is similar. Hydrogen bonding interactions are made with polar protein side chains in the plane of the cofactor, whereas hydrophobic stacking interactions are important below and above PQQ. One Arg side chain and one calcium ion are ligated to the ortho-quinone group of PQQ in an identical fashion in either active site, in agreement with their proposed catalytic function of polarizing the PQQ C5-O5 bond. The substrates are bound in a similar position above PQQ and within hydrogen bond distance of the putative general bases Asp297 (MDH) and His144 (s-GDH). On the basis of these similarities, we propose that MDH and s-GDH react with their substrates through an identical mechanism, comprising general base-catalyzed hydride transfer from the substrate to PQQ and subsequent tautomerization of the PQQ intermediate to reduced PQQ.

Full Text

The Full Text of this article is available as a PDF (488.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anthony C., Ghosh M., Blake C. C. The structure and function of methanol dehydrogenase and related quinoproteins containing pyrrolo-quinoline quinone. Biochem J. 1994 Dec 15;304(Pt 3):665–674. doi: 10.1042/bj3040665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anthony C. Quinoprotein-catalysed reactions. Biochem J. 1996 Dec 15;320(Pt 3):697–711. doi: 10.1042/bj3200697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Avezoux A., Goodwin M. G., Anthony C. The role of the novel disulphide ring in the active site of the quinoprotein methanol dehydrogenase from Methylobacterium extorquens. Biochem J. 1995 May 1;307(Pt 3):735–741. doi: 10.1042/bj3070735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cleton-Jansen A. M., Goosen N., Fayet O., van de Putte P. Cloning, mapping, and sequencing of the gene encoding Escherichia coli quinoprotein glucose dehydrogenase. J Bacteriol. 1990 Nov;172(11):6308–6315. doi: 10.1128/jb.172.11.6308-6315.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cleton-Jansen A. M., Goosen N., Wenzel T. J., van de Putte P. Cloning of the gene encoding quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus: evidence for the presence of a second enzyme. J Bacteriol. 1988 May;170(5):2121–2125. doi: 10.1128/jb.170.5.2121-2125.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cozier G. E., Anthony C. Structure of the quinoprotein glucose dehydrogenase of Escherichia coli modelled on that of methanol dehydrogenase from Methylobacterium extorquens. Biochem J. 1995 Dec 15;312(Pt 3):679–685. doi: 10.1042/bj3120679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cozier G. E., Giles I. G., Anthony C. The structure of the quinoprotein alcohol dehydrogenase of Acetobacter aceti modelled on that of methanol dehydrogenase from Methylobacterium extorquens. Biochem J. 1995 Jun 1;308(Pt 2):375–379. doi: 10.1042/bj3080375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dekker R. H., Duine J. A., Frank J., Verwiel P. E., Westerling J. Covalent addition of H2O, enzyme substrates and activators to pyrrolo-quinoline quinone, the coenzyme of quinoproteins. Eur J Biochem. 1982 Jun 15;125(1):69–73. doi: 10.1111/j.1432-1033.1982.tb06652.x. [DOI] [PubMed] [Google Scholar]
  9. Dodson G., Wlodawer A. Catalytic triads and their relatives. Trends Biochem Sci. 1998 Sep;23(9):347–352. doi: 10.1016/s0968-0004(98)01254-7. [DOI] [PubMed] [Google Scholar]
  10. Dokter P., Frank J., Duine J. A. Purification and characterization of quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus L.M.D. 79.41. Biochem J. 1986 Oct 1;239(1):163–167. doi: 10.1042/bj2390163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dokter P., van Wielink J. E., van Kleef M. A., Duine J. A. Cytochrome b-562 from Acinetobacter calcoaceticus L.M.D. 79.41. Its characteristics and role as electron acceptor for quinoprotein glucose dehydrogenase. Biochem J. 1988 Aug 15;254(1):131–138. doi: 10.1042/bj2540131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Duine J. A., Frank J., Jr Studies on methanol dehydrogenase from Hyphomicrobium X. Isolation of an oxidized form of the enzyme. Biochem J. 1980 Apr 1;187(1):213–219. doi: 10.1042/bj1870213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Duine J. A. Quinoproteins: enzymes containing the quinonoid cofactor pyrroloquinoline quinone, topaquinone or tryptophan-tryptophan quinone. Eur J Biochem. 1991 Sep 1;200(2):271–284. doi: 10.1111/j.1432-1033.1991.tb16183.x. [DOI] [PubMed] [Google Scholar]
  14. Frank J., Jr, Dijkstra M., Duine J. A., Balny C. Kinetic and spectral studies on the redox forms of methanol dehydrogenase from Hyphomicrobium X. Eur J Biochem. 1988 Jun 1;174(2):331–338. doi: 10.1111/j.1432-1033.1988.tb14102.x. [DOI] [PubMed] [Google Scholar]
  15. Frank J., Jr, van Krimpen S. H., Verwiel P. E., Jongejan J. A., Mulder A. C., Duine J. A. On the mechanism of inhibition of methanol dehydrogenase by cyclopropane-derived inhibitors. Eur J Biochem. 1989 Sep 1;184(1):187–195. doi: 10.1111/j.1432-1033.1989.tb15006.x. [DOI] [PubMed] [Google Scholar]
  16. Ghosh M., Anthony C., Harlos K., Goodwin M. G., Blake C. The refined structure of the quinoprotein methanol dehydrogenase from Methylobacterium extorquens at 1.94 A. Structure. 1995 Feb 15;3(2):177–187. doi: 10.1016/s0969-2126(01)00148-4. [DOI] [PubMed] [Google Scholar]
  17. Goodwin M. G., Anthony C. Characterization of a novel methanol dehydrogenase containing a Ba2+ ion at the active site. Biochem J. 1996 Sep 1;318(Pt 2):673–679. doi: 10.1042/bj3180673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Goodwin M. G., Avezoux A., Dales S. L., Anthony C. Reconstitution of the quinoprotein methanol dehydrogenase from inactive Ca(2+)-free enzyme with Ca2+, Sr2+ or Ba2+. Biochem J. 1996 Nov 1;319(Pt 3):839–842. doi: 10.1042/bj3190839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Harris T. K., Davidson V. L. Replacement of enzyme-bound calcium with strontium alters the kinetic properties of methanol dehydrogenase. Biochem J. 1994 May 15;300(Pt 1):175–182. doi: 10.1042/bj3000175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Itoh S., Kawakami H., Fukuzumi S. Model studies on calcium-containing quinoprotein alcohol dehydrogenases. Catalytic role of Ca2+ for the oxidation of alcohols by coenzyme PQQ (4,5-dihydro-4,5-dioxo-1H-pyrrolo[2,3-f]quinoline-2, 7,9-tricarboxylic acid). Biochemistry. 1998 May 5;37(18):6562–6571. doi: 10.1021/bi9800092. [DOI] [PubMed] [Google Scholar]
  21. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  22. Jongejan A., Jongejan J. A., Duine J. A. Homology model of the quinohaemoprotein alcohol dehydrogenase from Comamonas testosteroni. Protein Eng. 1998 Mar;11(3):185–198. doi: 10.1093/protein/11.3.185. [DOI] [PubMed] [Google Scholar]
  23. Kumar A., Sekharudu C., Ramakrishnan B., Dupureur C. M., Zhu H., Tsai M. D., Sundaralingam M. Structure and function of the catalytic site mutant Asp 99 Asn of phospholipase A2: absence of the conserved structural water. Protein Sci. 1994 Nov;3(11):2082–2088. doi: 10.1002/pro.5560031121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Olsthoorn A. J., Duine J. A. On the mechanism and specificity of soluble, quinoprotein glucose dehydrogenase in the oxidation of aldose sugars. Biochemistry. 1998 Sep 29;37(39):13854–13861. doi: 10.1021/bi9808868. [DOI] [PubMed] [Google Scholar]
  25. Olsthoorn A. J., Duine J. A. Production, characterization, and reconstitution of recombinant quinoprotein glucose dehydrogenase (soluble type; EC 1.1.99.17) apoenzyme of Acinetobacter calcoaceticus. Arch Biochem Biophys. 1996 Dec 1;336(1):42–48. doi: 10.1006/abbi.1996.0530. [DOI] [PubMed] [Google Scholar]
  26. Olsthoorn A. J., Otsuki T., Duine J. A. Ca2+ and its substitutes have two different binding sites and roles in soluble, quinoprotein (pyrroloquinoline-quinone-containing) glucose dehydrogenase. Eur J Biochem. 1997 Jul 15;247(2):659–665. doi: 10.1111/j.1432-1033.1997.00659.x. [DOI] [PubMed] [Google Scholar]
  27. Oubrie A., Rozeboom H. J., Dijkstra B. W. Active-site structure of the soluble quinoprotein glucose dehydrogenase complexed with methylhydrazine: a covalent cofactor-inhibitor complex. Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):11787–11791. doi: 10.1073/pnas.96.21.11787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Oubrie A., Rozeboom H. J., Kalk K. H., Duine J. A., Dijkstra B. W. The 1.7 A crystal structure of the apo form of the soluble quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus reveals a novel internal conserved sequence repeat. J Mol Biol. 1999 Jun 4;289(2):319–333. doi: 10.1006/jmbi.1999.2766. [DOI] [PubMed] [Google Scholar]
  29. Oubrie A., Rozeboom H. J., Kalk K. H., Olsthoorn A. J., Duine J. A., Dijkstra B. W. Structure and mechanism of soluble quinoprotein glucose dehydrogenase. EMBO J. 1999 Oct 1;18(19):5187–5194. doi: 10.1093/emboj/18.19.5187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Richardson I. W., Anthony C. Characterization of mutant forms of the quinoprotein methanol dehydrogenase lacking an essential calcium ion. Biochem J. 1992 Nov 1;287(Pt 3):709–715. doi: 10.1042/bj2870709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sprang S., Standing T., Fletterick R. J., Stroud R. M., Finer-Moore J., Xuong N. H., Hamlin R., Rutter W. J., Craik C. S. The three-dimensional structure of Asn102 mutant of trypsin: role of Asp102 in serine protease catalysis. Science. 1987 Aug 21;237(4817):905–909. doi: 10.1126/science.3112942. [DOI] [PubMed] [Google Scholar]
  32. Xia Z. X., He Y. N., Dai W. W., White S. A., Boyd G. D., Mathews F. S. Detailed active site configuration of a new crystal form of methanol dehydrogenase from Methylophilus W3A1 at 1.9 A resolution. Biochemistry. 1999 Jan 26;38(4):1214–1220. doi: 10.1021/bi9822574. [DOI] [PubMed] [Google Scholar]
  33. Xia Z., Dai W., Zhang Y., White S. A., Boyd G. D., Mathews F. S. Determination of the gene sequence and the three-dimensional structure at 2.4 angstroms resolution of methanol dehydrogenase from Methylophilus W3A1. J Mol Biol. 1996 Jun 14;259(3):480–501. doi: 10.1006/jmbi.1996.0334. [DOI] [PubMed] [Google Scholar]
  34. Zheng Y. J., Bruice T. C. Conformation of coenzyme pyrroloquinoline quinone and role of Ca2+ in the catalytic mechanism of quinoprotein methanol dehydrogenase. Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):11881–11886. doi: 10.1073/pnas.94.22.11881. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES