Abstract
Previously, we determined the DNA and amino acid sequences as well as biochemical and biophysical properties of a series of fungal phytases. The amino acid sequences displayed 49-68% identity between species, and the catalytic properties differed widely in terms of specific activity, substrate specificity, and pH optima. With the ultimate goal to combine the most favorable properties of all phytases in a single protein, we attempted, in the present investigation, to increase the specific activity of Aspergillus fumigatus phytase. The crystal structure of Aspergillus niger NRRL 3135 phytase known at 2.5 A resolution served to specify all active site residues. A multiple amino acid sequence alignment was then used to identify nonconserved active site residues that might correlate with a given favorable property of interest. Using this approach, Gln27 of A. fumigatus phytase (amino acid numbering according to A. niger phytase) was identified as likely to be involved in substrate binding and/or release and, possibly, to be responsible for the considerably lower specific activity (26.5 vs. 196 U x [mg protein](-1) at pH 5.0) of A. fumigatus phytase when compared to Aspergillus terreus phytase, which has a Leu at the equivalent position. Site-directed mutagenesis of Gln27 of A. fumigatus phytase to Leu in fact increased the specific activity to 92.1 U x (mg protein)(-1), and this and other mutations at position 27 yielded an interesting array of pH activity profiles and substrate specificities. Analysis of computer models of enzyme-substrate complexes suggested that Gln27 of wild-type A. fumigatus phytase forms a hydrogen bond with the 6-phosphate group of myo-inositol hexakisphosphate, which is weakened or lost with the amino acid substitutions tested. If this hydrogen bond were indeed responsible for the differences in specific activity, this would suggest product release as the rate-limiting step of the A. fumigatus wild-type phytase reaction.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Gerber P. R., Müller K. MAB, a generally applicable molecular force field for structure modelling in medicinal chemistry. J Comput Aided Mol Des. 1995 Jun;9(3):251–268. doi: 10.1007/BF00124456. [DOI] [PubMed] [Google Scholar]
- Kostrewa D., Grüninger-Leitch F., D'Arcy A., Broger C., Mitchell D., van Loon A. P. Crystal structure of phytase from Aspergillus ficuum at 2.5 A resolution. Nat Struct Biol. 1997 Mar;4(3):185–190. doi: 10.1038/nsb0397-185. [DOI] [PubMed] [Google Scholar]
- Lehmann M., Kostrewa D., Wyss M., Brugger R., D'Arcy A., Pasamontes L., van Loon A. P. From DNA sequence to improved functionality: using protein sequence comparisons to rapidly design a thermostable consensus phytase. Protein Eng. 2000 Jan;13(1):49–57. doi: 10.1093/protein/13.1.49. [DOI] [PubMed] [Google Scholar]
- Lim D., Golovan S., Forsberg C. W., Jia Z. Crystal structures of Escherichia coli phytase and its complex with phytate. Nat Struct Biol. 2000 Feb;7(2):108–113. doi: 10.1038/72371. [DOI] [PubMed] [Google Scholar]
- Mitchell D. B., Vogel K., Weimann B. J., Pasamontes L., van Loon A. P. The phytase subfamily of histidine acid phosphatases: isolation of genes for two novel phytases from the fungi Aspergillus terreus and Myceliophthora thermophila. Microbiology. 1997 Jan;143(Pt 1):245–252. doi: 10.1099/00221287-143-1-245. [DOI] [PubMed] [Google Scholar]
- Pasamontes L., Haiker M., Henriquez-Huecas M., Mitchell D. B., van Loon A. P. Cloning of the phytases from Emericella nidulans and the thermophilic fungus Talaromyces thermophilus. Biochim Biophys Acta. 1997 Sep 12;1353(3):217–223. doi: 10.1016/s0167-4781(97)00107-3. [DOI] [PubMed] [Google Scholar]
- Pasamontes L., Haiker M., Wyss M., Tessier M., van Loon A. P. Gene cloning, purification, and characterization of a heat-stable phytase from the fungus Aspergillus fumigatus. Appl Environ Microbiol. 1997 May;63(5):1696–1700. doi: 10.1128/aem.63.5.1696-1700.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Etten R. L. Human prostatic acid phosphatase: a histidine phosphatase. Ann N Y Acad Sci. 1982;390:27–51. doi: 10.1111/j.1749-6632.1982.tb40302.x. [DOI] [PubMed] [Google Scholar]
- Wodzinski R. J., Ullah A. H. Phytase. Adv Appl Microbiol. 1996;42:263–302. doi: 10.1016/s0065-2164(08)70375-7. [DOI] [PubMed] [Google Scholar]
- Wyss M., Brugger R., Kronenberger A., Rémy R., Fimbel R., Oesterhelt G., Lehmann M., van Loon A. P. Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Appl Environ Microbiol. 1999 Feb;65(2):367–373. doi: 10.1128/aem.65.2.367-373.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wyss M., Pasamontes L., Friedlein A., Rémy R., Tessier M., Kronenberger A., Middendorf A., Lehmann M., Schnoebelen L., Röthlisberger U. Biophysical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): molecular size, glycosylation pattern, and engineering of proteolytic resistance. Appl Environ Microbiol. 1999 Feb;65(2):359–366. doi: 10.1128/aem.65.2.359-366.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wyss M., Pasamontes L., Rémy R., Kohler J., Kusznir E., Gadient M., Müller F., van Loon APGM Comparison of the thermostability properties of three acid phosphatases from molds: Aspergillus fumigatus phytase, A. niger phytase, and A. niger PH 2.5 acid phosphatase. Appl Environ Microbiol. 1998 Nov;64(11):4446–4451. doi: 10.1128/aem.64.11.4446-4451.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]