Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Jul;9(7):1282–1293. doi: 10.1110/ps.9.7.1282

NMR structure of a concatemer of the first and second ligand-binding modules of the human low-density lipoprotein receptor.

N D Kurniawan 1, A R Atkins 1, S Bieri 1, C J Brown 1, I M Brereton 1, P A Kroon 1, R Smith 1
PMCID: PMC2144682  PMID: 10933493

Abstract

The ligand-binding domain of the human low-density lipoprotein receptor consists of seven modules, each of 40-45 residues. In the presence of calcium, these modules adopt a common polypeptide fold with three conserved disulfide bonds. A concatemer of the first and second modules (LB(1-2)) folds efficiently in the presence of calcium ions, forming the same disulfide connectivities as in the isolated modules. The three-dimensional structure of LB(1-2) has now been solved using two-dimensional 1H NMR spectroscopy and restrained molecular dynamics calculations. No intermodule nuclear Overhauser effects were observed, indicating the absence of persistent interaction between them. The near random-coil NH and H alpha chemical shifts and the low phi and psi angle order parameters of the four-residue linker suggest that it has considerable flexibility. The family of LB(1-2) structures superimposed well over LB1 or LB2, but not over both modules simultaneously. LB1 and LB2 have a similar pattern of calcium ligands, but the orientations of the indole rings of the tryptophan residues W23 and W66 differ, with the latter limiting solvent access to the calcium ion. From these studies, it appears that although most of the modules in the ligand-binding region of the receptor are joined by short segments, these linkers may impart considerable flexibility on this region.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkins A. R., Brereton I. M., Kroon P. A., Lee H. T., Smith R. Calcium is essential for the structural integrity of the cysteine-rich, ligand-binding repeat of the low-density lipoprotein receptor. Biochemistry. 1998 Feb 10;37(6):1662–1670. doi: 10.1021/bi972529n. [DOI] [PubMed] [Google Scholar]
  2. Barthe P., Yang Y. S., Chiche L., Hoh F., Strub M. P., Guignard L., Soulier J., Stern M. H., van Tilbeurgh H., Lhoste J. M. Solution structure of human p8MTCP1, a cysteine-rich protein encoded by the MTCP1 oncogene, reveals a new alpha-helical assembly motif. J Mol Biol. 1997 Dec 19;274(5):801–815. doi: 10.1006/jmbi.1997.1438. [DOI] [PubMed] [Google Scholar]
  3. Bayer P., Arndt A., Metzger S., Mahajan R., Melchior F., Jaenicke R., Becker J. Structure determination of the small ubiquitin-related modifier SUMO-1. J Mol Biol. 1998 Jul 10;280(2):275–286. doi: 10.1006/jmbi.1998.1839. [DOI] [PubMed] [Google Scholar]
  4. Bieri S., Atkins A. R., Lee H. T., Winzor D. J., Smith R., Kroon P. A. Folding, calcium binding, and structural characterization of a concatemer of the first and second ligand-binding modules of the low-density lipoprotein receptor. Biochemistry. 1998 Aug 4;37(31):10994–11002. doi: 10.1021/bi980452c. [DOI] [PubMed] [Google Scholar]
  5. Bieri S., Djordjevic J. T., Daly N. L., Smith R., Kroon P. A. Disulfide bridges of a cysteine-rich repeat of the LDL receptor ligand-binding domain. Biochemistry. 1995 Oct 10;34(40):13059–13065. doi: 10.1021/bi00040a017. [DOI] [PubMed] [Google Scholar]
  6. Bieri S., Djordjevic J. T., Jamshidi N., Smith R., Kroon P. A. Expression and disulfide-bond connectivity of the second ligand-binding repeat of the human LDL receptor. FEBS Lett. 1995 Sep 11;371(3):341–344. doi: 10.1016/0014-5793(95)00939-7. [DOI] [PubMed] [Google Scholar]
  7. Brodersen D. E., Nyborg J., Kjeldgaard M. Zinc-binding site of an S100 protein revealed. Two crystal structures of Ca2+-bound human psoriasin (S100A7) in the Zn2+-loaded and Zn2+-free states. Biochemistry. 1999 Feb 9;38(6):1695–1704. doi: 10.1021/bi982483d. [DOI] [PubMed] [Google Scholar]
  8. Brown M. S., Goldstein J. L. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986 Apr 4;232(4746):34–47. doi: 10.1126/science.3513311. [DOI] [PubMed] [Google Scholar]
  9. Brown M. S., Herz J., Goldstein J. L. LDL-receptor structure. Calcium cages, acid baths and recycling receptors. Nature. 1997 Aug 14;388(6643):629–630. doi: 10.1038/41672. [DOI] [PubMed] [Google Scholar]
  10. Campbell I. D., Downing A. K. NMR of modular proteins. Nat Struct Biol. 1998 Jul;5 (Suppl):496–499. doi: 10.1038/733. [DOI] [PubMed] [Google Scholar]
  11. Daly N. L., Djordjevic J. T., Kroon P. A., Smith R. Three-dimensional structure of the second cysteine-rich repeat from the human low-density lipoprotein receptor. Biochemistry. 1995 Nov 7;34(44):14474–14481. doi: 10.1021/bi00044a025. [DOI] [PubMed] [Google Scholar]
  12. Daly N. L., Scanlon M. J., Djordjevic J. T., Kroon P. A., Smith R. Three-dimensional structure of a cysteine-rich repeat from the low-density lipoprotein receptor. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6334–6338. doi: 10.1073/pnas.92.14.6334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. De Marino S., Morelli M. A., Fraternali F., Tamborini E., Musco G., Vrtala S., Dolecek C., Arosio P., Valenta R., Pastore A. An immunoglobulin-like fold in a major plant allergen: the solution structure of Phl p 2 from timothy grass pollen. Structure. 1999 Aug 15;7(8):943–952. doi: 10.1016/s0969-2126(99)80121-x. [DOI] [PubMed] [Google Scholar]
  14. Dolmer K., Huang W., Gettins P. G. Characterization of the calcium site in two complement-like domains from the low-density lipoprotein receptor-related protein (LRP) and comparison with a repeat from the low-density lipoprotein receptor. Biochemistry. 1998 Dec 1;37(48):17016–17023. doi: 10.1021/bi982022s. [DOI] [PubMed] [Google Scholar]
  15. Doreleijers J. F., Rullmann J. A., Kaptein R. Quality assessment of NMR structures: a statistical survey. J Mol Biol. 1998 Aug 7;281(1):149–164. doi: 10.1006/jmbi.1998.1808. [DOI] [PubMed] [Google Scholar]
  16. Downing A. K., Knott V., Werner J. M., Cardy C. M., Campbell I. D., Handford P. A. Solution structure of a pair of calcium-binding epidermal growth factor-like domains: implications for the Marfan syndrome and other genetic disorders. Cell. 1996 May 17;85(4):597–605. doi: 10.1016/s0092-8674(00)81259-3. [DOI] [PubMed] [Google Scholar]
  17. Esser V., Limbird L. E., Brown M. S., Goldstein J. L., Russell D. W. Mutational analysis of the ligand binding domain of the low density lipoprotein receptor. J Biol Chem. 1988 Sep 15;263(26):13282–13290. [PubMed] [Google Scholar]
  18. Fass D., Blacklow S., Kim P. S., Berger J. M. Molecular basis of familial hypercholesterolaemia from structure of LDL receptor module. Nature. 1997 Aug 14;388(6643):691–693. doi: 10.1038/41798. [DOI] [PubMed] [Google Scholar]
  19. Goldstein J. L., Brown M. S., Anderson R. G., Russell D. W., Schneider W. J. Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu Rev Cell Biol. 1985;1:1–39. doi: 10.1146/annurev.cb.01.110185.000245. [DOI] [PubMed] [Google Scholar]
  20. Güntert P., Mumenthaler C., Wüthrich K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol. 1997 Oct 17;273(1):283–298. doi: 10.1006/jmbi.1997.1284. [DOI] [PubMed] [Google Scholar]
  21. Herz J., Hamann U., Rogne S., Myklebost O., Gausepohl H., Stanley K. K. Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor. EMBO J. 1988 Dec 20;7(13):4119–4127. doi: 10.1002/j.1460-2075.1988.tb03306.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Huang W., Dolmer K., Gettins P. G. NMR solution structure of complement-like repeat CR8 from the low density lipoprotein receptor-related protein. J Biol Chem. 1999 May 14;274(20):14130–14136. doi: 10.1074/jbc.274.20.14130. [DOI] [PubMed] [Google Scholar]
  23. Jensen H. K., Jensen L. G., Hansen P. S., Faergeman O., Gregersen N. The Trp23-Stop and Trp66-Gly mutations in the LDL receptor gene: common causes of familial hypercholesterolemia in Denmark. Atherosclerosis. 1996 Feb;120(1-2):57–65. doi: 10.1016/0021-9150(95)05680-7. [DOI] [PubMed] [Google Scholar]
  24. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  25. Kay L. E., Forman-Kay J. D., McCubbin W. D., Kay C. M. Solution structure of a polypeptide dimer comprising the fourth Ca(2+)-binding site of troponin C by nuclear magnetic resonance spectroscopy. Biochemistry. 1991 Apr 30;30(17):4323–4333. doi: 10.1021/bi00231a031. [DOI] [PubMed] [Google Scholar]
  26. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  27. Laskowski R. A., Rullmannn J. A., MacArthur M. W., Kaptein R., Thornton J. M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR. 1996 Dec;8(4):477–486. doi: 10.1007/BF00228148. [DOI] [PubMed] [Google Scholar]
  28. Millhauser G. L., Stenland C. J., Hanson P., Bolin K. A., van de Ven F. J. Estimating the relative populations of 3(10)-helix and alpha-helix in Ala-rich peptides: a hydrogen exchange and high field NMR study. J Mol Biol. 1997 Apr 11;267(4):963–974. doi: 10.1006/jmbi.1997.0923. [DOI] [PubMed] [Google Scholar]
  29. Moorjani S., Roy M., Torres A., Bétard C., Gagné C., Lambert M., Brun D., Davignon J., Lupien P. Mutations of low-density-lipoprotein-receptor gene, variation in plasma cholesterol, and expression of coronary heart disease in homozygous familial hypercholesterolaemia. Lancet. 1993 May 22;341(8856):1303–1306. doi: 10.1016/0140-6736(93)90815-x. [DOI] [PubMed] [Google Scholar]
  30. Mumenthaler C., Güntert P., Braun W., Wüthrich K. Automated combined assignment of NOESY spectra and three-dimensional protein structure determination. J Biomol NMR. 1997 Dec;10(4):351–362. doi: 10.1023/a:1018383106236. [DOI] [PubMed] [Google Scholar]
  31. North C. L., Blacklow S. C. Structural independence of ligand-binding modules five and six of the LDL receptor. Biochemistry. 1999 Mar 30;38(13):3926–3935. doi: 10.1021/bi9821622. [DOI] [PubMed] [Google Scholar]
  32. Piotto M., Saudek V., Sklenár V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR. 1992 Nov;2(6):661–665. doi: 10.1007/BF02192855. [DOI] [PubMed] [Google Scholar]
  33. Rance M., Sørensen O. W., Bodenhausen G., Wagner G., Ernst R. R., Wüthrich K. Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. Biochem Biophys Res Commun. 1983 Dec 16;117(2):479–485. doi: 10.1016/0006-291x(83)91225-1. [DOI] [PubMed] [Google Scholar]
  34. Russell D. W., Brown M. S., Goldstein J. L. Different combinations of cysteine-rich repeats mediate binding of low density lipoprotein receptor to two different proteins. J Biol Chem. 1989 Dec 25;264(36):21682–21688. [PubMed] [Google Scholar]
  35. Rødningen O. K., Tonstad S., Medh J. D., Chappell D. A., Ose L., Leren T. P. Phenotypic consequences of a deletion of exons 2 and 3 of the LDL receptor gene. J Lipid Res. 1999 Feb;40(2):213–220. [PubMed] [Google Scholar]
  36. Saito A., Pietromonaco S., Loo A. K., Farquhar M. G. Complete cloning and sequencing of rat gp330/"megalin," a distinctive member of the low density lipoprotein receptor gene family. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9725–9729. doi: 10.1073/pnas.91.21.9725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sass C., Giroux L. M., Lussier-Cacan S., Davignon J., Minnich A. Unexpected consequences of deletion of the first two repeats of the ligand-binding domain from the low density lipoprotein receptor. Evidence from a human mutation. J Biol Chem. 1995 Oct 20;270(42):25166–25171. doi: 10.1074/jbc.270.42.25166. [DOI] [PubMed] [Google Scholar]
  38. Simmons T., Newhouse Y. M., Arnold K. S., Innerarity T. L., Weisgraber K. H. Human low density lipoprotein receptor fragment. Successful refolding of a functionally active ligand-binding domain produced in Escherichia coli. J Biol Chem. 1997 Oct 10;272(41):25531–25536. doi: 10.1074/jbc.272.41.25531. [DOI] [PubMed] [Google Scholar]
  39. Slupsky C. M., Sykes B. D. NMR solution structure of calcium-saturated skeletal muscle troponin C. Biochemistry. 1995 Dec 12;34(49):15953–15964. doi: 10.1021/bi00049a010. [DOI] [PubMed] [Google Scholar]
  40. Smith L. J., Bolin K. A., Schwalbe H., MacArthur M. W., Thornton J. M., Dobson C. M. Analysis of main chain torsion angles in proteins: prediction of NMR coupling constants for native and random coil conformations. J Mol Biol. 1996 Jan 26;255(3):494–506. doi: 10.1006/jmbi.1996.0041. [DOI] [PubMed] [Google Scholar]
  41. Takahashi S., Kawarabayasi Y., Nakai T., Sakai J., Yamamoto T. Rabbit very low density lipoprotein receptor: a low density lipoprotein receptor-like protein with distinct ligand specificity. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9252–9256. doi: 10.1073/pnas.89.19.9252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Williamson M. P., Havel T. F., Wüthrich K. Solution conformation of proteinase inhibitor IIA from bull seminal plasma by 1H nuclear magnetic resonance and distance geometry. J Mol Biol. 1985 Mar 20;182(2):295–315. doi: 10.1016/0022-2836(85)90347-x. [DOI] [PubMed] [Google Scholar]
  43. Wilson C., Wardell M. R., Weisgraber K. H., Mahley R. W., Agard D. A. Three-dimensional structure of the LDL receptor-binding domain of human apolipoprotein E. Science. 1991 Jun 28;252(5014):1817–1822. doi: 10.1126/science.2063194. [DOI] [PubMed] [Google Scholar]
  44. van Driel I. R., Goldstein J. L., Südhof T. C., Brown M. S. First cysteine-rich repeat in ligand-binding domain of low density lipoprotein receptor binds Ca2+ and monoclonal antibodies, but not lipoproteins. J Biol Chem. 1987 Dec 25;262(36):17443–17449. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES