Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Jul;9(7):1274–1281. doi: 10.1110/ps.9.7.1274

Topography of a 2.0 A structure of alpha1-antitrypsin reveals targets for rational drug design to prevent conformational disease.

P R Elliott 1, X Y Pei 1, T R Dafforn 1, D A Lomas 1
PMCID: PMC2144685  PMID: 10933492

Abstract

Members of the serpin family of serine proteinase inhibitors play important roles in the inflammatory, coagulation, fibrinolytic, and complement cascades. An inherent part of their function is the ability to undergo a structural rearrangement, the stressed (S) to relaxed (R) transition, in which an extra strand is inserted into the central A beta-sheet. In order for this transition to take place, the A sheet has to be unusually flexible. Malfunctions in this flexibility can lead to aberrant protein linkage, serpin inactivation, and diseases as diverse as cirrhosis, thrombosis, angioedema, emphysema, and dementia. The development of agents that control this conformational rearrangement requires a high resolution structure of an active serpin. We present here the topology of the archetypal serpin alpha1-antitrypsin to 2 A resolution. This structure allows us to define five cavities that are potential targets for rational drug design to develop agents that will prevent conformational transitions and ameliorate the associated disease.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams P. D., Pannu N. S., Read R. J., Brünger A. T. Cross-validated maximum likelihood enhances crystallographic simulated annealing refinement. Proc Natl Acad Sci U S A. 1997 May 13;94(10):5018–5023. doi: 10.1073/pnas.94.10.5018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aertgeerts K., De Bondt H. L., De Ranter C. J., Declerck P. J. Mechanisms contributing to the conformational and functional flexibility of plasminogen activator inhibitor-1. Nat Struct Biol. 1995 Oct;2(10):891–897. doi: 10.1038/nsb1095-891. [DOI] [PubMed] [Google Scholar]
  3. Baumann U., Bode W., Huber R., Travis J., Potempa J. Crystal structure of cleaved equine leucocyte elastase inhibitor determined at 1.95 A resolution. J Mol Biol. 1992 Aug 20;226(4):1207–1218. doi: 10.1016/0022-2836(92)91062-t. [DOI] [PubMed] [Google Scholar]
  4. Baumann U., Huber R., Bode W., Grosse D., Lesjak M., Laurell C. B. Crystal structure of cleaved human alpha 1-antichymotrypsin at 2.7 A resolution and its comparison with other serpins. J Mol Biol. 1991 Apr 5;218(3):595–606. doi: 10.1016/0022-2836(91)90704-a. [DOI] [PubMed] [Google Scholar]
  5. Berkenpas M. B., Lawrence D. A., Ginsburg D. Molecular evolution of plasminogen activator inhibitor-1 functional stability. EMBO J. 1995 Jul 3;14(13):2969–2977. doi: 10.1002/j.1460-2075.1995.tb07299.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Björquist P., Ehnebom J., Inghardt T., Hansson L., Lindberg M., Linschoten M., Strömqvist M., Deinum J. Identification of the binding site for a low-molecular-weight inhibitor of plasminogen activator inhibitor type 1 by site-directed mutagenesis. Biochemistry. 1998 Feb 3;37(5):1227–1234. doi: 10.1021/bi971554q. [DOI] [PubMed] [Google Scholar]
  7. Brünger A. T., Adams P. D., Rice L. M. New applications of simulated annealing in X-ray crystallography and solution NMR. Structure. 1997 Mar 15;5(3):325–336. doi: 10.1016/s0969-2126(97)00190-1. [DOI] [PubMed] [Google Scholar]
  8. Brünger A. T., Krukowski A., Erickson J. W. Slow-cooling protocols for crystallographic refinement by simulated annealing. Acta Crystallogr A. 1990 Jul 1;46(Pt 7):585–593. doi: 10.1107/s0108767390002355. [DOI] [PubMed] [Google Scholar]
  9. Brünger A. T., Kuriyan J., Karplus M. Crystallographic R factor refinement by molecular dynamics. Science. 1987 Jan 23;235(4787):458–460. doi: 10.1126/science.235.4787.458. [DOI] [PubMed] [Google Scholar]
  10. Carrell R. W., Stein P. E., Fermi G., Wardell M. R. Biological implications of a 3 A structure of dimeric antithrombin. Structure. 1994 Apr 15;2(4):257–270. doi: 10.1016/s0969-2126(00)00028-9. [DOI] [PubMed] [Google Scholar]
  11. Chang W. S., Lomas D. A. Latent alpha1-antichymotrypsin. A molecular explanation for the inactivation of alpha1-antichymotrypsin in chronic bronchitis and emphysema. J Biol Chem. 1998 Feb 6;273(6):3695–3701. doi: 10.1074/jbc.273.6.3695. [DOI] [PubMed] [Google Scholar]
  12. Chowdhury V., Olds R. J., Lane D. A., Conard J., Pabinger I., Ryan K., Bauer K. A., Bhavnani M., Abildgaard U., Finazzi G. Identification of nine novel mutations in type I antithrombin deficiency by heteroduplex screening. Br J Haematol. 1993 Aug;84(4):656–661. doi: 10.1111/j.1365-2141.1993.tb03142.x. [DOI] [PubMed] [Google Scholar]
  13. Davis R. L., Shrimpton A. E., Holohan P. D., Bradshaw C., Feiglin D., Collins G. H., Sonderegger P., Kinter J., Becker L. M., Lacbawan F. Familial dementia caused by polymerization of mutant neuroserpin. Nature. 1999 Sep 23;401(6751):376–379. doi: 10.1038/43894. [DOI] [PubMed] [Google Scholar]
  14. Elliott P. R., Abrahams J. P., Lomas D. A. Wild-type alpha 1-antitrypsin is in the canonical inhibitory conformation. J Mol Biol. 1998 Jan 23;275(3):419–425. doi: 10.1006/jmbi.1997.1458. [DOI] [PubMed] [Google Scholar]
  15. Elliott P. R., Lomas D. A., Carrell R. W., Abrahams J. P. Inhibitory conformation of the reactive loop of alpha 1-antitrypsin. Nat Struct Biol. 1996 Aug;3(8):676–681. doi: 10.1038/nsb0896-676. [DOI] [PubMed] [Google Scholar]
  16. Engh R., Löbermann H., Schneider M., Wiegand G., Huber R., Laurell C. B. The S variant of human alpha 1-antitrypsin, structure and implications for function and metabolism. Protein Eng. 1989 Mar;2(6):407–415. doi: 10.1093/protein/2.6.407. [DOI] [PubMed] [Google Scholar]
  17. Gooptu B., Hazes B., Chang W. S., Dafforn T. R., Carrell R. W., Read R. J., Lomas D. A. Inactive conformation of the serpin alpha(1)-antichymotrypsin indicates two-stage insertion of the reactive loop: implications for inhibitory function and conformational disease. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):67–72. doi: 10.1073/pnas.97.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Harrop S. J., Jankova L., Coles M., Jardine D., Whittaker J. S., Gould A. R., Meister A., King G. C., Mabbutt B. C., Curmi P. M. The crystal structure of plasminogen activator inhibitor 2 at 2.0 A resolution: implications for serpin function. Structure. 1999 Jan 15;7(1):43–54. doi: 10.1016/s0969-2126(99)80008-2. [DOI] [PubMed] [Google Scholar]
  19. Jeunemaitre X., Soubrier F., Kotelevtsev Y. V., Lifton R. P., Williams C. S., Charru A., Hunt S. C., Hopkins P. N., Williams R. R., Lalouel J. M. Molecular basis of human hypertension: role of angiotensinogen. Cell. 1992 Oct 2;71(1):169–180. doi: 10.1016/0092-8674(92)90275-h. [DOI] [PubMed] [Google Scholar]
  20. Jin L., Abrahams J. P., Skinner R., Petitou M., Pike R. N., Carrell R. W. The anticoagulant activation of antithrombin by heparin. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14683–14688. doi: 10.1073/pnas.94.26.14683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  22. Kleywegt G. J., Brünger A. T. Checking your imagination: applications of the free R value. Structure. 1996 Aug 15;4(8):897–904. doi: 10.1016/s0969-2126(96)00097-4. [DOI] [PubMed] [Google Scholar]
  23. Laskowski R. A. SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J Mol Graph. 1995 Oct;13(5):323-30, 307-8. doi: 10.1016/0263-7855(95)00073-9. [DOI] [PubMed] [Google Scholar]
  24. Lawrence D. A. The serpin-proteinase complex revealed. Nat Struct Biol. 1997 May;4(5):339–341. doi: 10.1038/nsb0597-339. [DOI] [PubMed] [Google Scholar]
  25. Lee K. N., Park S. D., Yu M. H. Probing the native strain iin alpha1-antitrypsin. Nat Struct Biol. 1996 Jun;3(6):497–500. doi: 10.1038/nsb0696-497. [DOI] [PubMed] [Google Scholar]
  26. Li J., Wang Z., Canagarajah B., Jiang H., Kanost M., Goldsmith E. J. The structure of active serpin 1K from Manduca sexta. Structure. 1999 Jan 15;7(1):103–109. doi: 10.1016/s0969-2126(99)80013-6. [DOI] [PubMed] [Google Scholar]
  27. Loebermann H., Tokuoka R., Deisenhofer J., Huber R. Human alpha 1-proteinase inhibitor. Crystal structure analysis of two crystal modifications, molecular model and preliminary analysis of the implications for function. J Mol Biol. 1984 Aug 15;177(3):531–557. [PubMed] [Google Scholar]
  28. Lomas D. A., Evans D. L., Stone S. R., Chang W. S., Carrell R. W. Effect of the Z mutation on the physical and inhibitory properties of alpha 1-antitrypsin. Biochemistry. 1993 Jan 19;32(2):500–508. doi: 10.1021/bi00053a014. [DOI] [PubMed] [Google Scholar]
  29. Mast A. E., Enghild J. J., Salvesen G. Conformation of the reactive site loop of alpha 1-proteinase inhibitor probed by limited proteolysis. Biochemistry. 1992 Mar 17;31(10):2720–2728. doi: 10.1021/bi00125a012. [DOI] [PubMed] [Google Scholar]
  30. Mori Y., Seino S., Takeda K., Flink I. L., Murata Y., Bell G. I., Refetoff S. A mutation causing reduced biological activity and stability of thyroxine-binding globulin probably as a result of abnormal glycosylation of the molecule. Mol Endocrinol. 1989 Mar;3(3):575–579. doi: 10.1210/mend-3-3-575. [DOI] [PubMed] [Google Scholar]
  31. Mottonen J., Strand A., Symersky J., Sweet R. M., Danley D. E., Geoghegan K. F., Gerard R. D., Goldsmith E. J. Structural basis of latency in plasminogen activator inhibitor-1. Nature. 1992 Jan 16;355(6357):270–273. doi: 10.1038/355270a0. [DOI] [PubMed] [Google Scholar]
  32. Mourey L., Samama J. P., Delarue M., Petitou M., Choay J., Moras D. Crystal structure of cleaved bovine antithrombin III at 3.2 A resolution. J Mol Biol. 1993 Jul 5;232(1):223–241. doi: 10.1006/jmbi.1993.1378. [DOI] [PubMed] [Google Scholar]
  33. Murshudov G. N., Vagin A. A., Dodson E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240–255. doi: 10.1107/S0907444996012255. [DOI] [PubMed] [Google Scholar]
  34. Patston P. A., Hauert J., Michaud M., Schapira M. Formation and properties of C1-inhibitor polymers. FEBS Lett. 1995 Jul 24;368(3):401–404. doi: 10.1016/0014-5793(95)00694-5. [DOI] [PubMed] [Google Scholar]
  35. Potempa J., Korzus E., Travis J. The serpin superfamily of proteinase inhibitors: structure, function, and regulation. J Biol Chem. 1994 Jun 10;269(23):15957–15960. [PubMed] [Google Scholar]
  36. Rice L. M., Brünger A. T. Torsion angle dynamics: reduced variable conformational sampling enhances crystallographic structure refinement. Proteins. 1994 Aug;19(4):277–290. doi: 10.1002/prot.340190403. [DOI] [PubMed] [Google Scholar]
  37. Ryu S. E., Choi H. J., Kwon K. S., Lee K. N., Yu M. H. The native strains in the hydrophobic core and flexible reactive loop of a serine protease inhibitor: crystal structure of an uncleaved alpha1-antitrypsin at 2.7 A. Structure. 1996 Oct 15;4(10):1181–1192. doi: 10.1016/s0969-2126(96)00126-8. [DOI] [PubMed] [Google Scholar]
  38. Schreuder H. A., de Boer B., Dijkema R., Mulders J., Theunissen H. J., Grootenhuis P. D., Hol W. G. The intact and cleaved human antithrombin III complex as a model for serpin-proteinase interactions. Nat Struct Biol. 1994 Jan;1(1):48–54. doi: 10.1038/nsb0194-48. [DOI] [PubMed] [Google Scholar]
  39. Sharp A. M., Stein P. E., Pannu N. S., Carrell R. W., Berkenpas M. B., Ginsburg D., Lawrence D. A., Read R. J. The active conformation of plasminogen activator inhibitor 1, a target for drugs to control fibrinolysis and cell adhesion. Structure. 1999 Feb 15;7(2):111–118. doi: 10.1016/S0969-2126(99)80018-5. [DOI] [PubMed] [Google Scholar]
  40. Skinner R., Abrahams J. P., Whisstock J. C., Lesk A. M., Carrell R. W., Wardell M. R. The 2.6 A structure of antithrombin indicates a conformational change at the heparin binding site. J Mol Biol. 1997 Feb 28;266(3):601–609. doi: 10.1006/jmbi.1996.0798. [DOI] [PubMed] [Google Scholar]
  41. Stein P. E., Carrell R. W. What do dysfunctional serpins tell us about molecular mobility and disease? Nat Struct Biol. 1995 Feb;2(2):96–113. doi: 10.1038/nsb0295-96. [DOI] [PubMed] [Google Scholar]
  42. Stein P. E., Leslie A. G., Finch J. T., Turnell W. G., McLaughlin P. J., Carrell R. W. Crystal structure of ovalbumin as a model for the reactive centre of serpins. Nature. 1990 Sep 6;347(6288):99–102. doi: 10.1038/347099a0. [DOI] [PubMed] [Google Scholar]
  43. Sui G. C., Wiman B. Functional effects of single amino acid substitutions in the region of Phe113 to Asp138 in the plasminogen activator inhibitor 1 molecule. Biochem J. 1998 Apr 15;331(Pt 2):409–415. doi: 10.1042/bj3310409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wei A., Rubin H., Cooperman B. S., Christianson D. W. Crystal structure of an uncleaved serpin reveals the conformation of an inhibitory reactive loop. Nat Struct Biol. 1994 Apr;1(4):251–258. doi: 10.1038/nsb0494-251. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES