Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Jul;9(7):1347–1356. doi: 10.1110/ps.9.7.1347

Bovine beta-lactoglobulin: interaction studies with palmitic acid.

L Ragona 1, F Fogolari 1, L Zetta 1, D M Pérez 1, P Puyol 1, K De Kruif 1, F Löhr 1, H Rüterjans 1, H Molinari 1
PMCID: PMC2144686  PMID: 10933500

Abstract

Bovine beta-lactoglobulin (BLG) in vivo has been found complexed with fatty acids, especially palmitic and oleic acid. To elucidate the still unknown structure-function relationship in this protein, the interactions between 13C enriched palmitic acid (PA) and BLG were investigated by means of one-, two-, and three-dimensional NMR spectroscopy in the pH range 8.4-2.1. The NMR spectra revealed that at neutral pH the ligand is bound within the central cavity of BLG, with the methyl end deeply buried within the protein. The analysis of 13C spectra of the holo protein revealed the presence of conformational variability of bound PA carboxyl end in the pH range 8.4-5.9, related to the Tanford transition. The release of PA starts at pH lower than 6.0, and it is nearly complete at acidic pH. This finding is relevant in relation to the widely reported hypothesis that this protein can act as a transporter through the acidic gastric tract. Ligand binding and release is shown to be completely reversible over the entire pH range examined, differently from other fatty acid binding proteins whose behavior is analyzed throughout the paper. The mode of interaction of BLG is compatible with the proposed function of facilitating the digestion of milk fat during the neonatal period of calves.

Full Text

The Full Text of this article is available as a PDF (537.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brownlow S., Morais Cabral J. H., Cooper R., Flower D. R., Yewdall S. J., Polikarpov I., North A. C., Sawyer L. Bovine beta-lactoglobulin at 1.8 A resolution--still an enigmatic lipocalin. Structure. 1997 Apr 15;5(4):481–495. doi: 10.1016/s0969-2126(97)00205-0. [DOI] [PubMed] [Google Scholar]
  2. Bychkova V. E., Berni R., Rossi G. L., Kutyshenko V. P., Ptitsyn O. B. Retinol-binding protein is in the molten globule state at low pH. Biochemistry. 1992 Aug 25;31(33):7566–7571. doi: 10.1021/bi00148a018. [DOI] [PubMed] [Google Scholar]
  3. Cistola D. P., Sacchettini J. C., Banaszak L. J., Walsh M. T., Gordon J. I. Fatty acid interactions with rat intestinal and liver fatty acid-binding proteins expressed in Escherichia coli. A comparative 13C NMR study. J Biol Chem. 1989 Feb 15;264(5):2700–2710. [PubMed] [Google Scholar]
  4. Cistola D. P., Small D. M., Hamilton J. A. Carbon 13 NMR studies of saturated fatty acids bound to bovine serum albumin. I. The filling of individual fatty acid binding sites. J Biol Chem. 1987 Aug 15;262(23):10971–10979. [PubMed] [Google Scholar]
  5. Creamer L. K. Effect of sodium dodecyl sulfate and palmitic acid on the equilibrium unfolding of bovine beta-lactoglobulin. Biochemistry. 1995 May 30;34(21):7170–7176. doi: 10.1021/bi00021a031. [DOI] [PubMed] [Google Scholar]
  6. Curley R. W., Jr, Sundaram A. K., Fowble J. W., Abildgaard F., Westler W. M., Markley J. L. NMR studies of retinoid-protein interactions: the conformation of [13C]-beta-ionones bound to beta-lactoglobulin B. Pharm Res. 1999 May;16(5):651–659. doi: 10.1023/a:1018860221492. [DOI] [PubMed] [Google Scholar]
  7. Dufour E., Genot C., Haertlé T. beta-Lactoglobulin binding properties during its folding changes studied by fluorescence spectroscopy. Biochim Biophys Acta. 1994 Mar 16;1205(1):105–112. doi: 10.1016/0167-4838(94)90098-1. [DOI] [PubMed] [Google Scholar]
  8. Flower D. R. Multiple molecular recognition properties of the lipocalin protein family. J Mol Recognit. 1995 May-Jun;8(3):185–195. doi: 10.1002/jmr.300080304. [DOI] [PubMed] [Google Scholar]
  9. Fogolari F., Ragona L., Licciardi S., Romagnoli S., Michelutti R., Ugolini R., Molinari H. Electrostatic properties of bovine beta-lactoglobulin. Proteins. 2000 Jun 1;39(4):317–330. doi: 10.1002/(sici)1097-0134(20000601)39:4<317::aid-prot50>3.0.co;2-w. [DOI] [PubMed] [Google Scholar]
  10. Fogolari F., Ragona L., Zetta L., Romagnoli S., De Kruif K. G., Molinari H. Monomeric bovine beta-lactoglobulin adopts a beta-barrel fold at pH 2. FEBS Lett. 1998 Oct 2;436(2):149–154. doi: 10.1016/s0014-5793(98)00936-3. [DOI] [PubMed] [Google Scholar]
  11. Frapin D., Dufour E., Haertle T. Probing the fatty acid binding site of beta-lactoglobulins. J Protein Chem. 1993 Aug;12(4):443–449. doi: 10.1007/BF01025044. [DOI] [PubMed] [Google Scholar]
  12. Glasgow B. J., Gasymov O. K., Abduragimov A. R., Yusifov T. N., Altenbach C., Hubbell W. L. Side chain mobility and ligand interactions of the G strand of tear lipocalins by site-directed spin labeling. Biochemistry. 1999 Oct 12;38(41):13707–13716. doi: 10.1021/bi9913449. [DOI] [PubMed] [Google Scholar]
  13. Kuwata K., Hoshino M., Forge V., Era S., Batt C. A., Goto Y. Solution structure and dynamics of bovine beta-lactoglobulin A. Protein Sci. 1999 Nov;8(11):2541–2545. doi: 10.1110/ps.8.11.2541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lange D. C., Kothari R., Patel R. C., Patel S. C. Retinol and retinoic acid bind to a surface cleft in bovine beta-lactoglobulin: a method of binding site determination using fluorescence resonance energy transfer. Biophys Chem. 1998 Aug 4;74(1):45–51. doi: 10.1016/s0301-4622(98)00164-1. [DOI] [PubMed] [Google Scholar]
  15. Lassen D., Lücke C., Kveder M., Mesgarzadeh A., Schmidt J. M., Specht B., Lezius A., Spener F., Rüterjans H. Three-dimensional structure of bovine heart fatty-acid-binding protein with bound palmitic acid, determined by multidimensional NMR spectroscopy. Eur J Biochem. 1995 May 15;230(1):266–280. doi: 10.1111/j.1432-1033.1995.tb20560.x. [DOI] [PubMed] [Google Scholar]
  16. Mesgarzadeh A., Pfeiffer S., Engelke J., Lassen D., Rüterjans H. Bound water in apo and holo bovine heart fatty-acid-binding protein determined by heteronuclear NMR spectroscopy. Eur J Biochem. 1998 Feb 1;251(3):781–786. doi: 10.1046/j.1432-1327.1998.2510781.x. [DOI] [PubMed] [Google Scholar]
  17. Molinari H., Ragona L., Varani L., Musco G., Consonni R., Zetta L., Monaco H. L. Partially folded structure of monomeric bovine beta-lactoglobulin. FEBS Lett. 1996 Mar 4;381(3):237–243. doi: 10.1016/0014-5793(96)00100-7. [DOI] [PubMed] [Google Scholar]
  18. Narayan M., Berliner L. J. Fatty acids and retinoids bind independently and simultaneously to beta-lactoglobulin. Biochemistry. 1997 Feb 18;36(7):1906–1911. doi: 10.1021/bi9621526. [DOI] [PubMed] [Google Scholar]
  19. Narayan M., Berliner L. J. Mapping fatty acid binding to beta-lactoglobulin: Ligand binding is restricted by modification of Cys 121. Protein Sci. 1998 Jan;7(1):150–157. doi: 10.1002/pro.5560070116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nolde D. E., Sobol A. G., Pluzhnikov K. A., Grishin E. V., Arseniev A. S. Three-dimensional structure of ectatomin from Ectatomma tuberculatum ant venom. J Biomol NMR. 1995 Jan;5(1):1–13. doi: 10.1007/BF00227465. [DOI] [PubMed] [Google Scholar]
  21. Parks J. S., Cistola D. P., Small D. M., Hamilton J. A. Interactions of the carboxyl group of oleic acid with bovine serum albumin: a 13C NMR study. J Biol Chem. 1983 Aug 10;258(15):9262–9269. [PubMed] [Google Scholar]
  22. Perez M. D., Sanchez L., Aranda P., Ena J. M., Oria R., Calvo M. Effect of beta-lactoglobulin on the activity of pregastric lipase. A possible role for this protein in ruminant milk. Biochim Biophys Acta. 1992 Jan 24;1123(2):151–155. doi: 10.1016/0005-2760(92)90105-5. [DOI] [PubMed] [Google Scholar]
  23. Pérez M. D., Calvo M. Interaction of beta-lactoglobulin with retinol and fatty acids and its role as a possible biological function for this protein: a review. J Dairy Sci. 1995 May;78(5):978–988. doi: 10.3168/jds.S0022-0302(95)76713-3. [DOI] [PubMed] [Google Scholar]
  24. Pérez M. D., Díaz de Villegas C., Sánchez L., Aranda P., Ena J. M., Calvo M. Interaction of fatty acids with beta-lactoglobulin and albumin from ruminant milk. J Biochem. 1989 Dec;106(6):1094–1097. doi: 10.1093/oxfordjournals.jbchem.a122971. [DOI] [PubMed] [Google Scholar]
  25. Qin B. Y., Bewley M. C., Creamer L. K., Baker E. N., Jameson G. B. Functional implications of structural differences between variants A and B of bovine beta-lactoglobulin. Protein Sci. 1999 Jan;8(1):75–83. doi: 10.1110/ps.8.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Qin B. Y., Bewley M. C., Creamer L. K., Baker H. M., Baker E. N., Jameson G. B. Structural basis of the Tanford transition of bovine beta-lactoglobulin. Biochemistry. 1998 Oct 6;37(40):14014–14023. doi: 10.1021/bi981016t. [DOI] [PubMed] [Google Scholar]
  27. Qin B. Y., Creamer L. K., Baker E. N., Jameson G. B. 12-Bromododecanoic acid binds inside the calyx of bovine beta-lactoglobulin. FEBS Lett. 1998 Nov 6;438(3):272–278. doi: 10.1016/s0014-5793(98)01199-5. [DOI] [PubMed] [Google Scholar]
  28. Ragona L., Fogolari F., Romagnoli S., Zetta L., Maubois J. L., Molinari H. Unfolding and refolding of bovine beta-lactoglobulin monitored by hydrogen exchange measurements. J Mol Biol. 1999 Nov 5;293(4):953–969. doi: 10.1006/jmbi.1999.3191. [DOI] [PubMed] [Google Scholar]
  29. Ragona L., Pusterla F., Zetta L., Monaco H. L., Molinari H. Identification of a conserved hydrophobic cluster in partially folded bovine beta-lactoglobulin at pH 2. Fold Des. 1997;2(5):281–290. doi: 10.1016/s1359-0278(97)00039-4. [DOI] [PubMed] [Google Scholar]
  30. Richieri G. V., Ogata R. T., Kleinfeld A. M. Kinetics of fatty acid interactions with fatty acid binding proteins from adipocyte, heart, and intestine. J Biol Chem. 1996 May 10;271(19):11291–11300. doi: 10.1074/jbc.271.19.11291. [DOI] [PubMed] [Google Scholar]
  31. Scapin G., Gordon J. I., Sacchettini J. C. Refinement of the structure of recombinant rat intestinal fatty acid-binding apoprotein at 1.2-A resolution. J Biol Chem. 1992 Feb 25;267(6):4253–4269. doi: 10.2210/pdb1ifc/pdb. [DOI] [PubMed] [Google Scholar]
  32. TANFORD C., NOZAKI Y. Physico-chemical comparison of beta-lactoglobulins A and B. J Biol Chem. 1959 Nov;234:2874–2877. [PubMed] [Google Scholar]
  33. Uhrínová S., Smith M. H., Jameson G. B., Uhrín D., Sawyer L., Barlow P. N. Structural changes accompanying pH-induced dissociation of the beta-lactoglobulin dimer. Biochemistry. 2000 Apr 4;39(13):3565–3574. doi: 10.1021/bi992629o. [DOI] [PubMed] [Google Scholar]
  34. Uhrínová S., Uhrín D., Denton H., Smith M., Sawyer L., Barlow P. N. Complete assignment of 1H, 13C and 15N chemical shifts for bovine beta-lactoglobulin: secondary structure and topology of the native state is retained in a partially unfolded form. J Biomol NMR. 1998 Jul;12(1):89–107. doi: 10.1023/a:1008268528695. [DOI] [PubMed] [Google Scholar]
  35. Woolf T. B. Simulations of fatty acid-binding proteins suggest sites important for function. I. Stearic acid. Biophys J. 1998 Feb;74(2 Pt 1):681–693. doi: 10.1016/S0006-3495(98)73994-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wu S. Y., Pérez M. D., Puyol P., Sawyer L. beta-lactoglobulin binds palmitate within its central cavity. J Biol Chem. 1999 Jan 1;274(1):170–174. doi: 10.1074/jbc.274.1.170. [DOI] [PubMed] [Google Scholar]
  37. Young A. C., Scapin G., Kromminga A., Patel S. B., Veerkamp J. H., Sacchettini J. C. Structural studies on human muscle fatty acid binding protein at 1.4 A resolution: binding interactions with three C18 fatty acids. Structure. 1994 Jun 15;2(6):523–534. doi: 10.1016/s0969-2126(00)00052-6. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES