Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Sep;9(9):1719–1729.

Conformation and stability of thiol-modified bovine beta-lactoglobulin.

K Sakai 1, K Sakurai 1, M Sakai 1, M Hoshino 1, Y Goto 1
PMCID: PMC2144692  PMID: 11045618

Abstract

Bovine beta-lactoglobulin A assumes a dimeric native conformation at neutral pH, while the conformation at pH 2 is monomeric but still native. Beta-lactoglobulin A has a free thiol at Cys121, which is buried between the beta-barrel and the C-terminal major alpha-helix. This thiol group was specifically reacted with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) in the presence of 1.0 M Gdn-HCI at pH 7.5, producing a modified beta-lactoglobulin (TNB-bIg) containing a mixed disulfide bond with 5-thio-2-nitrobenzoic acid (TNB). The conformation and stability of TNB-bIg were studied by circular dichroism (CD), tryptophan fluorescence, analytical ultracentrifugation, and one-dimensional 1H-NMR. The CD spectra of TNB-bIg indicated disordering of the native secondary structure at pH 7.5, whereas a slight increase in the alpha-helical content was observed at pH 2.0. The tryptophan fluorescence of TNB-bIg was significantly quenched compared with that of the intact protein, probably by the energy transfer to TNB. Sedimentation equilibrium analysis indicated that, at neutral pH, TNB-bIg is monomeric while the intact protein is dimeric. In contrast, at pH 2.0, both the intact beta-lactoglobulin and TNB-bIg were monomeric. The unfolding transition of TNB-bIg induced by Gdn-HCl was cooperative in both pH regions, although the degree of cooperativity was less than that of the intact protein. The 1H-NMR spectrum for TNB-bIg at pH 3.0 was native-like, whereas the spectrum at pH 7.5 was similar to that of the unfolded proteins. These results suggest that modification of the buried thiol group destabilizes the rigid hydrophobic core and the dimer interface, producing a monomeric state that is native-like at pH 2.0 but is molten globule-like at pH 7.5. Upon reducing the mixed disulfide of TNB-bIg with dithiothreitol, the intact beta-lactoglobulin was regenerated. TNB-bIg will become a useful model to analyze the conformation and stability of the intermediate of protein folding.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apenten R. K. Protein stability function relations: beta-lactoglobulin-A sulphydryl group reactivity and its relationship to protein unfolding stability. Int J Biol Macromol. 1998 Jul;23(1):19–25. doi: 10.1016/s0141-8130(98)00008-7. [DOI] [PubMed] [Google Scholar]
  2. Brownlow S., Morais Cabral J. H., Cooper R., Flower D. R., Yewdall S. J., Polikarpov I., North A. C., Sawyer L. Bovine beta-lactoglobulin at 1.8 A resolution--still an enigmatic lipocalin. Structure. 1997 Apr 15;5(4):481–495. doi: 10.1016/s0969-2126(97)00205-0. [DOI] [PubMed] [Google Scholar]
  3. Burova T. V., Choiset Y., Tran V., Haertlé T. Role of free Cys121 in stabilization of bovine beta-lactoglobulin B. Protein Eng. 1998 Nov;11(11):1065–1073. doi: 10.1093/protein/11.11.1065. [DOI] [PubMed] [Google Scholar]
  4. Chen Y. H., Yang J. T., Martinez H. M. Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry. 1972 Oct 24;11(22):4120–4131. doi: 10.1021/bi00772a015. [DOI] [PubMed] [Google Scholar]
  5. Cohen F. E. Protein misfolding and prion diseases. J Mol Biol. 1999 Oct 22;293(2):313–320. doi: 10.1006/jmbi.1999.2990. [DOI] [PubMed] [Google Scholar]
  6. Cupo J. F., Pace C. N. Conformational stability of mixed disulfide derivatives of beta-lactoglobulin B. Biochemistry. 1983 May 24;22(11):2654–2658. doi: 10.1021/bi00280a010. [DOI] [PubMed] [Google Scholar]
  7. Dalal S., Balasubramanian S., Regan L. Transmuting alpha helices and beta sheets. Fold Des. 1997;2(5):R71–R79. doi: 10.1016/s1359-0278(97)00036-9. [DOI] [PubMed] [Google Scholar]
  8. Forge V., Hoshino M., Kuwata K., Arai M., Kuwajima K., Batt C. A., Goto Y. Is folding of beta-lactoglobulin non-hierarchic? Intermediate with native-like beta-sheet and non-native alpha-helix. J Mol Biol. 2000 Mar 3;296(4):1039–1051. doi: 10.1006/jmbi.1999.3515. [DOI] [PubMed] [Google Scholar]
  9. Fujiwara K., Arai M., Shimizu A., Ikeguchi M., Kuwajima K., Sugai S. Folding-unfolding equilibrium and kinetics of equine beta-lactoglobulin: equivalence between the equilibrium molten globule state and a burst-phase folding intermediate. Biochemistry. 1999 Apr 6;38(14):4455–4463. doi: 10.1021/bi982683p. [DOI] [PubMed] [Google Scholar]
  10. Godovac-Zimmermann J. The structural motif of beta-lactoglobulin and retinol-binding protein: a basic framework for binding and transport of small hydrophobic molecules? Trends Biochem Sci. 1988 Feb;13(2):64–66. doi: 10.1016/0968-0004(88)90031-x. [DOI] [PubMed] [Google Scholar]
  11. Goto Y., Hamaguchi K. Formation of the intrachain disulfide bond in the constant fragment of the immunoglobulin light chain. J Mol Biol. 1981 Mar 5;146(3):321–340. doi: 10.1016/0022-2836(81)90391-0. [DOI] [PubMed] [Google Scholar]
  12. Goto Y., Hamaguchi K. The role of the intrachain disulfide bond in the conformation and stability of the constant fragment of the immunoglobulin light chain. J Biochem. 1979 Nov;86(5):1433–1441. doi: 10.1093/oxfordjournals.jbchem.a132661. [DOI] [PubMed] [Google Scholar]
  13. Goto Y., Hamaguchi K. Unfolding and refolding of the reduced constant fragment of the immunoglobulin light chain. Kinetic role of the intrachain disulfide bond. J Mol Biol. 1982 Apr 25;156(4):911–926. doi: 10.1016/0022-2836(82)90147-4. [DOI] [PubMed] [Google Scholar]
  14. Griko YuV, Kutyshenko V. P. Differences in the processes of beta-lactoglobulin cold and heat denaturations. Biophys J. 1994 Jul;67(1):356–363. doi: 10.1016/S0006-3495(94)80488-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hagihara Y., Tan Y., Goto Y. Comparison of the conformational stability of the molten globule and native states of horse cytochrome c. Effects of acetylation, heat, urea and guanidine-hydrochloride. J Mol Biol. 1994 Apr 1;237(3):336–348. doi: 10.1006/jmbi.1994.1234. [DOI] [PubMed] [Google Scholar]
  16. Hamada D., Goto Y. The equilibrium intermediate of beta-lactoglobulin with non-native alpha-helical structure. J Mol Biol. 1997 Jun 20;269(4):479–487. doi: 10.1006/jmbi.1997.1055. [DOI] [PubMed] [Google Scholar]
  17. Hamada D., Kuroda Y., Tanaka T., Goto Y. High helical propensity of the peptide fragments derived from beta-lactoglobulin, a predominantly beta-sheet protein. J Mol Biol. 1995 Dec 8;254(4):737–746. doi: 10.1006/jmbi.1995.0651. [DOI] [PubMed] [Google Scholar]
  18. Hamada D., Segawa S., Goto Y. Non-native alpha-helical intermediate in the refolding of beta-lactoglobulin, a predominantly beta-sheet protein. Nat Struct Biol. 1996 Oct;3(10):868–873. doi: 10.1038/nsb1096-868. [DOI] [PubMed] [Google Scholar]
  19. Ikeguchi M., Kato S., Shimizu A., Sugai S. Molten globule state of equine beta-lactoglobulin. Proteins. 1997 Apr;27(4):567–575. doi: 10.1002/(sici)1097-0134(199704)27:4<567::aid-prot9>3.0.co;2-7. [DOI] [PubMed] [Google Scholar]
  20. Jackson G. S., Hosszu L. L., Power A., Hill A. F., Kenney J., Saibil H., Craven C. J., Waltho J. P., Clarke A. R., Collinge J. Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science. 1999 Mar 19;283(5409):1935–1937. doi: 10.1126/science.283.5409.1935. [DOI] [PubMed] [Google Scholar]
  21. Joss L. A., Ralston G. B. Beta-lactoglobulin B: a proposed standard for the study of reversible self-association reactions in the analytical ultracentrifuge? Anal Biochem. 1996 Apr 5;236(1):20–26. doi: 10.1006/abio.1996.0126. [DOI] [PubMed] [Google Scholar]
  22. Kella N. K., Kinsella J. E. Structural stability of beta-lactoglobulin in the presence of kosmotropic salts. A kinetic and thermodynamic study. Int J Pept Protein Res. 1988 Nov;32(5):396–405. doi: 10.1111/j.1399-3011.1988.tb01274.x. [DOI] [PubMed] [Google Scholar]
  23. Kim T. R., Goto Y., Hirota N., Kuwata K., Denton H., Wu S. Y., Sawyer L., Batt C. A. High-level expression of bovine beta-lactoglobulin in Pichia pastoris and characterization of its physical properties. Protein Eng. 1997 Nov;10(11):1339–1345. doi: 10.1093/protein/10.11.1339. [DOI] [PubMed] [Google Scholar]
  24. Kuwata K., Hoshino M., Era S., Batt C. A., Goto Y. alpha-->beta transition of beta-lactoglobulin as evidenced by heteronuclear NMR. J Mol Biol. 1998 Nov 6;283(4):731–739. doi: 10.1006/jmbi.1998.2117. [DOI] [PubMed] [Google Scholar]
  25. Kuwata K., Hoshino M., Forge V., Era S., Batt C. A., Goto Y. Solution structure and dynamics of bovine beta-lactoglobulin A. Protein Sci. 1999 Nov;8(11):2541–2545. doi: 10.1110/ps.8.11.2541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Li R., Woodward C. The hydrogen exchange core and protein folding. Protein Sci. 1999 Aug;8(8):1571–1590. doi: 10.1110/ps.8.8.1571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mihara H., Takahashi Y. Engineering peptides and proteins that undergo alpha-to-beta transitions. Curr Opin Struct Biol. 1997 Aug;7(4):501–508. doi: 10.1016/s0959-440x(97)80113-3. [DOI] [PubMed] [Google Scholar]
  28. Mills O. E., Creamer L. K. A conformational change in bovine beta-lactoglobulin at low pH. Biochim Biophys Acta. 1975 Feb 27;379(2):618–626. doi: 10.1016/0005-2795(75)90168-3. [DOI] [PubMed] [Google Scholar]
  29. Milne J. S., Xu Y., Mayne L. C., Englander S. W. Experimental study of the protein folding landscape: unfolding reactions in cytochrome c. J Mol Biol. 1999 Jul 16;290(3):811–822. doi: 10.1006/jmbi.1999.2924. [DOI] [PubMed] [Google Scholar]
  30. Myers J. K., Pace C. N., Scholtz J. M. Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 1995 Oct;4(10):2138–2148. doi: 10.1002/pro.5560041020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Narayan M., Berliner L. J. Mapping fatty acid binding to beta-lactoglobulin: Ligand binding is restricted by modification of Cys 121. Protein Sci. 1998 Jan;7(1):150–157. doi: 10.1002/pro.5560070116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nishii I., Kataoka M., Tokunaga F., Goto Y. Cold denaturation of the molten globule states of apomyoglobin and a profile for protein folding. Biochemistry. 1994 Apr 26;33(16):4903–4909. doi: 10.1021/bi00182a019. [DOI] [PubMed] [Google Scholar]
  33. Pace C. N. Conformational stability of globular proteins. Trends Biochem Sci. 1990 Jan;15(1):14–17. doi: 10.1016/0968-0004(90)90124-t. [DOI] [PubMed] [Google Scholar]
  34. Ptitsyn O. B. Molten globule and protein folding. Adv Protein Chem. 1995;47:83–229. doi: 10.1016/s0065-3233(08)60546-x. [DOI] [PubMed] [Google Scholar]
  35. Qin B. Y., Bewley M. C., Creamer L. K., Baker H. M., Baker E. N., Jameson G. B. Structural basis of the Tanford transition of bovine beta-lactoglobulin. Biochemistry. 1998 Oct 6;37(40):14014–14023. doi: 10.1021/bi981016t. [DOI] [PubMed] [Google Scholar]
  36. Qin B. Y., Creamer L. K., Baker E. N., Jameson G. B. 12-Bromododecanoic acid binds inside the calyx of bovine beta-lactoglobulin. FEBS Lett. 1998 Nov 6;438(3):272–278. doi: 10.1016/s0014-5793(98)01199-5. [DOI] [PubMed] [Google Scholar]
  37. Ragona L., Fogolari F., Romagnoli S., Zetta L., Maubois J. L., Molinari H. Unfolding and refolding of bovine beta-lactoglobulin monitored by hydrogen exchange measurements. J Mol Biol. 1999 Nov 5;293(4):953–969. doi: 10.1006/jmbi.1999.3191. [DOI] [PubMed] [Google Scholar]
  38. Renard D., Lefebvre J., Griffin M. C., Griffin W. G. Effects of pH and salt environment on the association of beta-lactoglobulin revealed by intrinsic fluorescence studies. Int J Biol Macromol. 1998 Feb;22(1):41–49. doi: 10.1016/s0141-8130(97)00086-x. [DOI] [PubMed] [Google Scholar]
  39. Riddles P. W., Blakeley R. L., Zerner B. Reassessment of Ellman's reagent. Methods Enzymol. 1983;91:49–60. doi: 10.1016/s0076-6879(83)91010-8. [DOI] [PubMed] [Google Scholar]
  40. Shiraki K., Nishikawa K., Goto Y. Trifluoroethanol-induced stabilization of the alpha-helical structure of beta-lactoglobulin: implication for non-hierarchical protein folding. J Mol Biol. 1995 Jan 13;245(2):180–194. doi: 10.1006/jmbi.1994.0015. [DOI] [PubMed] [Google Scholar]
  41. Tsunenaga M., Goto Y., Kawata Y., Hamaguchi K. Unfolding and refolding of a type kappa immunoglobulin light chain and its variable and constant fragments. Biochemistry. 1987 Sep 22;26(19):6044–6051. doi: 10.1021/bi00393a015. [DOI] [PubMed] [Google Scholar]
  42. Yamasaki R., Hoshino M., Wazawa T., Ishii Y., Yanagida T., Kawata Y., Higurashi T., Sakai K., Nagai J., Goto Y. Single molecular observation of the interaction of GroEL with substrate proteins. J Mol Biol. 1999 Oct 8;292(5):965–972. doi: 10.1006/jmbi.1999.3129. [DOI] [PubMed] [Google Scholar]
  43. Zimmerman J. K., Barlow G. H., Klotz I. M. Dissociation of beta-lactoglobulin near neutral pH. Arch Biochem Biophys. 1970 May;138(1):101–109. doi: 10.1016/0003-9861(70)90289-4. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES