Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Sep;9(9):1709–1718. doi: 10.1110/ps.9.9.1709

NMR investigation of the interaction of the inhibitor protein Im9 with its partner DNase.

R Boetzel 1, M Czisch 1, R Kaptein 1, A M Hemmings 1, R James 1, C Kleanthous 1, G R Moore 1
PMCID: PMC2144694  PMID: 11045617

Abstract

The bacterial toxin colicin E9 is secreted by producing Escherichia coli cells with its 9.5 kDa inhibitor protein Im9 bound tightly to its 14.5 kDa C-terminal DNase domain. Double- and triple-resonance NMR spectra of the 24 kDa complex of uniformly 13C and 15N labeled Im9 bound to the unlabeled DNase domain have provided sufficient constraints for the solution structure of the bound Im9 to be determined. For the final ensemble of 20 structures, pairwise RMSDs for residues 3-84 were 0.76 +/- 0.14 A for the backbone atoms and 1.36 +/- 0.15 A for the heavy atoms. Representative solution structures of the free and bound Im9 are highly similar, with backbone and heavy atom RMSDs of 1.63 and 2.44 A, respectively, for residues 4-83, suggesting that binding does not cause a major conformational change in Im9. The NMR studies have also allowed the DNase contact surface on Im9 to be investigated through changes in backbone chemical shifts and NOEs between the two proteins determined from comparisons of 1H-1H-13C NOESY-HSQC spectra with and without 13C decoupling. The NMR-defined interface agrees well with that determined in a recent X-ray structure analysis with the major difference being that a surface loop of Im9, which is at the interface, has a different conformation in the solution and crystal structures. Tyr54, a key residue on the interface, is shown to exhibit NMR characteristics indicative of slow rotational flipping. A mechanistic description of the influence binding of Im9 has on the dynamic behavior of E9 DNase, which is known to exist in two slowly interchanging conformers in solution, is proposed.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buckle A. M., Schreiber G., Fersht A. R. Protein-protein recognition: crystal structural analysis of a barnase-barstar complex at 2.0-A resolution. Biochemistry. 1994 Aug 2;33(30):8878–8889. doi: 10.1021/bi00196a004. [DOI] [PubMed] [Google Scholar]
  2. Chak K. F., Safo M. K., Ku W. Y., Hsieh S. Y., Yuan H. S. The crystal structure of the immunity protein of colicin E7 suggests a possible colicin-interacting surface. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6437–6442. doi: 10.1073/pnas.93.13.6437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Delaglio F., Grzesiek S., Vuister G. W., Zhu G., Pfeifer J., Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995 Nov;6(3):277–293. doi: 10.1007/BF00197809. [DOI] [PubMed] [Google Scholar]
  4. Dennis C. A., Videler H., Pauptit R. A., Wallis R., James R., Moore G. R., Kleanthous C. A structural comparison of the colicin immunity proteins Im7 and Im9 gives new insights into the molecular determinants of immunity-protein specificity. Biochem J. 1998 Jul 1;333(Pt 1):183–191. doi: 10.1042/bj3330183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Garinot-Schneider C., Pommer A. J., Moore G. R., Kleanthous C., James R. Identification of putative active-site residues in the DNase domain of colicin E9 by random mutagenesis. J Mol Biol. 1996 Aug 2;260(5):731–742. doi: 10.1006/jmbi.1996.0433. [DOI] [PubMed] [Google Scholar]
  6. Grzesiek S., Bax A. Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins. J Biomol NMR. 1993 Mar;3(2):185–204. doi: 10.1007/BF00178261. [DOI] [PubMed] [Google Scholar]
  7. Güntert P., Mumenthaler C., Wüthrich K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol. 1997 Oct 17;273(1):283–298. doi: 10.1006/jmbi.1997.1284. [DOI] [PubMed] [Google Scholar]
  8. Ikura M., Kay L. E., Bax A. A novel approach for sequential assignment of 1H, 13C, and 15N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry. 1990 May 15;29(19):4659–4667. doi: 10.1021/bi00471a022. [DOI] [PubMed] [Google Scholar]
  9. Jakes K. S., Zinder N. D. Highly purified colicin E3 contains immunity protein. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3380–3384. doi: 10.1073/pnas.71.9.3380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. James R., Kleanthous C., Moore G. R. The biology of E colicins: paradigms and paradoxes. Microbiology. 1996 Jul;142(Pt 7):1569–1580. doi: 10.1099/13500872-142-7-1569. [DOI] [PubMed] [Google Scholar]
  11. Kleanthous C., Kühlmann U. C., Pommer A. J., Ferguson N., Radford S. E., Moore G. R., James R., Hemmings A. M. Structural and mechanistic basis of immunity toward endonuclease colicins. Nat Struct Biol. 1999 Mar;6(3):243–252. doi: 10.1038/6683. [DOI] [PubMed] [Google Scholar]
  12. Ko T. P., Liao C. C., Ku W. Y., Chak K. F., Yuan H. S. The crystal structure of the DNase domain of colicin E7 in complex with its inhibitor Im7 protein. Structure. 1999 Jan 15;7(1):91–102. doi: 10.1016/s0969-2126(99)80012-4. [DOI] [PubMed] [Google Scholar]
  13. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  14. Laskowski R. A., Rullmannn J. A., MacArthur M. W., Kaptein R., Thornton J. M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR. 1996 Dec;8(4):477–486. doi: 10.1007/BF00228148. [DOI] [PubMed] [Google Scholar]
  15. Li W., Dennis C. A., Moore G. R., James R., Kleanthous C. Protein-protein interaction specificity of Im9 for the endonuclease toxin colicin E9 defined by homologue-scanning mutagenesis. J Biol Chem. 1997 Aug 29;272(35):22253–22258. doi: 10.1074/jbc.272.35.22253. [DOI] [PubMed] [Google Scholar]
  16. Lo Conte L., Chothia C., Janin J. The atomic structure of protein-protein recognition sites. J Mol Biol. 1999 Feb 5;285(5):2177–2198. doi: 10.1006/jmbi.1998.2439. [DOI] [PubMed] [Google Scholar]
  17. Lubienski M. J., Bycroft M., Freund S. M., Fersht A. R. Three-dimensional solution structure and 13C assignments of barstar using nuclear magnetic resonance spectroscopy. Biochemistry. 1994 Aug 2;33(30):8866–8877. [PubMed] [Google Scholar]
  18. Luginbühl P., Güntert P., Billeter M., Wüthrich K. The new program OPAL for molecular dynamics simulations and energy refinements of biological macromolecules. J Biomol NMR. 1996 Sep;8(2):136–146. doi: 10.1007/BF00211160. [DOI] [PubMed] [Google Scholar]
  19. Osborne M. J., Breeze A. L., Lian L. Y., Reilly A., James R., Kleanthous C., Moore G. R. Three-dimensional solution structure and 13C nuclear magnetic resonance assignments of the colicin E9 immunity protein Im9. Biochemistry. 1996 Jul 23;35(29):9505–9512. doi: 10.1021/bi960401k. [DOI] [PubMed] [Google Scholar]
  20. Osborne M. J., Lian L. Y., Wallis R., Reilly A., James R., Kleanthous C., Moore G. R. Sequential assignments and identification of secondary structure elements of the colicin E9 immunity protein in solution by homonuclear and heteronuclear NMR. Biochemistry. 1994 Oct 18;33(41):12347–12355. doi: 10.1021/bi00207a001. [DOI] [PubMed] [Google Scholar]
  21. Osborne M. J., Wallis R., Leung K. Y., Williams G., Lian L. Y., James R., Kleanthous C., Moore G. R. Identification of critical residues in the colicin E9 DNase binding region of the Im9 protein. Biochem J. 1997 May 1;323(Pt 3):823–831. doi: 10.1042/bj3230823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pommer A. J., Kühlmann U. C., Cooper A., Hemmings A. M., Moore G. R., James R., Kleanthous C. Homing in on the role of transition metals in the HNH motif of colicin endonucleases. J Biol Chem. 1999 Sep 17;274(38):27153–27160. doi: 10.1074/jbc.274.38.27153. [DOI] [PubMed] [Google Scholar]
  23. Rajagopal P., Waygood E. B., Reizer J., Saier M. H., Jr, Klevit R. E. Demonstration of protein-protein interaction specificity by NMR chemical shift mapping. Protein Sci. 1997 Dec;6(12):2624–2627. doi: 10.1002/pro.5560061214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sidikaro J., Nomura M. E3 immunity substance. A protein from e3-colicinogenic cells that accounts for their immunity to colicin E3. J Biol Chem. 1974 Jan 25;249(2):445–453. [PubMed] [Google Scholar]
  25. Wallis R., Leung K. Y., Osborne M. J., James R., Moore G. R., Kleanthous C. Specificity in protein-protein recognition: conserved Im9 residues are the major determinants of stability in the colicin E9 DNase-Im9 complex. Biochemistry. 1998 Jan 13;37(2):476–485. doi: 10.1021/bi971884a. [DOI] [PubMed] [Google Scholar]
  26. Wallis R., Leung K. Y., Osborne M. J., James R., Moore G. R., Kleanthous C. Specificity in protein-protein recognition: conserved Im9 residues are the major determinants of stability in the colicin E9 DNase-Im9 complex. Biochemistry. 1998 Jan 13;37(2):476–485. doi: 10.1021/bi971884a. [DOI] [PubMed] [Google Scholar]
  27. Wallis R., Leung K. Y., Pommer A. J., Videler H., Moore G. R., James R., Kleanthous C. Protein-protein interactions in colicin E9 DNase-immunity protein complexes. 2. Cognate and noncognate interactions that span the millimolar to femtomolar affinity range. Biochemistry. 1995 Oct 24;34(42):13751–13759. doi: 10.1021/bi00042a005. [DOI] [PubMed] [Google Scholar]
  28. Wallis R., Moore G. R., James R., Kleanthous C. Protein-protein interactions in colicin E9 DNase-immunity protein complexes. 1. Diffusion-controlled association and femtomolar binding for the cognate complex. Biochemistry. 1995 Oct 24;34(42):13743–13750. doi: 10.1021/bi00042a004. [DOI] [PubMed] [Google Scholar]
  29. Wallis R., Moore G. R., Kleanthous C., James R. Molecular analysis of the protein-protein interaction between the E9 immunity protein and colicin E9. Eur J Biochem. 1992 Dec 15;210(3):923–930. doi: 10.1111/j.1432-1033.1992.tb17496.x. [DOI] [PubMed] [Google Scholar]
  30. Wallis R., Reilly A., Barnes K., Abell C., Campbell D. G., Moore G. R., James R., Kleanthous C. Tandem overproduction and characterisation of the nuclease domain of colicin E9 and its cognate inhibitor protein Im9. Eur J Biochem. 1994 Mar 1;220(2):447–454. doi: 10.1111/j.1432-1033.1994.tb18642.x. [DOI] [PubMed] [Google Scholar]
  31. Wallis R., Reilly A., Rowe A., Moore G. R., James R., Kleanthous C. In vivo and in vitro characterization of overproduced colicin E9 immunity protein. Eur J Biochem. 1992 Jul 15;207(2):687–695. doi: 10.1111/j.1432-1033.1992.tb17096.x. [DOI] [PubMed] [Google Scholar]
  32. Whittaker S. B., Boetzel R., MacDonald C., Lian L. Y., Pommer A. J., Reilly A., James R., Kleanthous C., Moore G. R. NMR detection of slow conformational dynamics in an endonuclease toxin. J Biomol NMR. 1998 Jul;12(1):145–159. doi: 10.1023/a:1008272928173. [DOI] [PubMed] [Google Scholar]
  33. Whittaker S. B., Czisch M., Wechselberger R., Kaptein R., Hemmings A. M., James R., Kleanthous C., Moore G. R. Slow conformational dynamics of an endonuclease persist in its complex with its natural protein inhibitor. Protein Sci. 2000 Apr;9(4):713–720. doi: 10.1110/ps.9.4.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wishart D. S., Bigam C. G., Yao J., Abildgaard F., Dyson H. J., Oldfield E., Markley J. L., Sykes B. D. 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR. 1995 Sep;6(2):135–140. doi: 10.1007/BF00211777. [DOI] [PubMed] [Google Scholar]
  35. Wishart D. S., Sykes B. D., Richards F. M. The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry. 1992 Feb 18;31(6):1647–1651. doi: 10.1021/bi00121a010. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES