Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Sep;9(9):1810–1817. doi: 10.1110/ps.9.9.1810

Polypeptide stimulators of the Ms-Lon protease.

S G Rudyak 1, T E Shrader 1
PMCID: PMC2144696  PMID: 11045626

Abstract

Both the peptidase activity against small fluorescent peptide substrates and the ATPase activity of Lon (La) proteases are stimulated by unstructured proteins such as alpha-casein. This stimulation reveals the simultaneous interaction of Lon with two proteolytic substrates--alpha-casein and the peptide substrate. To understand the cellular function of this stimulation, it is important to determine the physical properties of Lon stimulators. The abilities of compositionally simple random copolymers of amino acids (rcAAs) to stimulate the peptidase and ATPase activities of the Lon protease from Mycobacterium smegmatis (Ms-Lon) and its N-terminal truncation mutant (N-E226) were determined. We report that cationic but not anionic rcAAs stimulated Ms-Lon's peptidase activity but were themselves poor substrates for the enzyme. Peptidase stimulation by rcAAs correlated approximately with the degree of hydrophobicity of these polypeptides and reached levels >10-fold higher than observed previously for Ms-Lon stimulators such as alpha-casein. In contrast to alpha-casein, which stimulates Ms-Lon's peptidase activity by 40% and ATPase activity by 150%, rcAAs stimulated peptidase activity without concomitant stimulation of ATPase activity. Active site labeling experiments suggested that both rcAAs and ATP increased peptidase activity by increasing accessibility to the peptidase active site. Peptidase activity assays in the presence of both alpha-casein and rcAAs revealed that interactions of rcAAs and alpha-casein with Ms-Lon are extremely complex and not mutually exclusive. Specifically, (1) additions of low concentrations of alpha-casein (<50 microg/mL) caused a further stimulation of Ms-Lon's rcAA-stimulated peptidase activity; (2) additions of higher concentrations of alpha-casein inhibited Ms-Lon's rcAA-stimulated peptidase activity; (3) additions of all concentrations of alpha-casein inhibited N-E226's rcAA-stimulated peptidase activity. We conclude the Ms-Lon can interact with an rcAA, alpha-casein, and a substrate peptide simultaneously, and that formation of this quaternary complex requires the N-terminal domain of Ms-Lon. These data support models of Ms-Lon that include two allosteric polypeptide binding sites distinct from the catalytic peptidase site.

Full Text

The Full Text of this article is available as a PDF (455.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amerik AYu, Antonov V. K., Gorbalenya A. E., Kotova S. A., Rotanova T. V., Shimbarevich E. V. Site-directed mutagenesis of La protease. A catalytically active serine residue. FEBS Lett. 1991 Aug 5;287(1-2):211–214. doi: 10.1016/0014-5793(91)80053-6. [DOI] [PubMed] [Google Scholar]
  2. Black M. J., Jones M. E. Inorganic phosphate determination in the presence of a labile organic phosphate: assay for carbamyl phosphate phosphatase activity. Anal Biochem. 1983 Nov;135(1):233–238. doi: 10.1016/0003-2697(83)90756-x. [DOI] [PubMed] [Google Scholar]
  3. Brazil B. T., Ybarra J., Horowitz P. M. Divalent cations can induce the exposure of GroEL hydrophobic surfaces and strengthen GroEL hydrophobic binding interactions. Novel effects of Zn2+ GroEL interactions. J Biol Chem. 1998 Feb 6;273(6):3257–3263. doi: 10.1074/jbc.273.6.3257. [DOI] [PubMed] [Google Scholar]
  4. Casadaban M. J., Cohen S. N. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol. 1980 Apr;138(2):179–207. doi: 10.1016/0022-2836(80)90283-1. [DOI] [PubMed] [Google Scholar]
  5. Chung C. H., Goldberg A. L. The product of the lon (capR) gene in Escherichia coli is the ATP-dependent protease, protease La. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4931–4935. doi: 10.1073/pnas.78.8.4931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fischer H., Glockshuber R. ATP hydrolysis is not stoichiometrically linked with proteolysis in the ATP-dependent protease La from Escherichia coli. J Biol Chem. 1993 Oct 25;268(30):22502–22507. [PubMed] [Google Scholar]
  7. Goldberg A. L., Moerschell R. P., Chung C. H., Maurizi M. R. ATP-dependent protease La (lon) from Escherichia coli. Methods Enzymol. 1994;244:350–375. doi: 10.1016/0076-6879(94)44027-1. [DOI] [PubMed] [Google Scholar]
  8. Goldberg A. L. The mechanism and functions of ATP-dependent proteases in bacterial and animal cells. Eur J Biochem. 1992 Jan 15;203(1-2):9–23. doi: 10.1111/j.1432-1033.1992.tb19822.x. [DOI] [PubMed] [Google Scholar]
  9. Goldberg A. L., Waxman L. The role of ATP hydrolysis in the breakdown of proteins and peptides by protease La from Escherichia coli. J Biol Chem. 1985 Oct 5;260(22):12029–12034. [PubMed] [Google Scholar]
  10. Gottesman S., Wickner S., Maurizi M. R. Protein quality control: triage by chaperones and proteases. Genes Dev. 1997 Apr 1;11(7):815–823. doi: 10.1101/gad.11.7.815. [DOI] [PubMed] [Google Scholar]
  11. Levchenko I., Smith C. K., Walsh N. P., Sauer R. T., Baker T. A. PDZ-like domains mediate binding specificity in the Clp/Hsp100 family of chaperones and protease regulatory subunits. Cell. 1997 Dec 26;91(7):939–947. doi: 10.1016/s0092-8674(00)80485-7. [DOI] [PubMed] [Google Scholar]
  12. Mayer M. P., Bukau B. Hsp70 chaperone systems: diversity of cellular functions and mechanism of action. Biol Chem. 1998 Mar;379(3):261–268. [PubMed] [Google Scholar]
  13. Menon A. S., Goldberg A. L. Protein substrates activate the ATP-dependent protease La by promoting nucleotide binding and release of bound ADP. J Biol Chem. 1987 Nov 5;262(31):14929–14934. [PubMed] [Google Scholar]
  14. Rasulova F. S., Dergousova N. I., Starkova N. N., Melnikov E. E., Rumsh L. D., Ginodman L. M., Rotanova T. V. The isolated proteolytic domain of Escherichia coli ATP-dependent protease Lon exhibits the peptidase activity. FEBS Lett. 1998 Aug 7;432(3):179–181. doi: 10.1016/s0014-5793(98)00859-x. [DOI] [PubMed] [Google Scholar]
  15. Roudiak S. G., Seth A., Knipfer N., Shrader T. E. The lon protease from Mycobacterium smegmatis: molecular cloning, sequence analysis, functional expression, and enzymatic characterization. Biochemistry. 1998 Jan 6;37(1):377–386. doi: 10.1021/bi971732f. [DOI] [PubMed] [Google Scholar]
  16. Roudiak S. G., Shrader T. E. Functional role of the N-terminal region of the Lon protease from Mycobacterium smegmatis. Biochemistry. 1998 Aug 11;37(32):11255–11263. doi: 10.1021/bi980945h. [DOI] [PubMed] [Google Scholar]
  17. Rüdiger S., Germeroth L., Schneider-Mergener J., Bukau B. Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J. 1997 Apr 1;16(7):1501–1507. doi: 10.1093/emboj/16.7.1501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Smith C. K., Baker T. A., Sauer R. T. Lon and Clp family proteases and chaperones share homologous substrate-recognition domains. Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6678–6682. doi: 10.1073/pnas.96.12.6678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stahlberg H., Kutejová E., Suda K., Wolpensinger B., Lustig A., Schatz G., Engel A., Suzuki C. K. Mitochondrial Lon of Saccharomyces cerevisiae is a ring-shaped protease with seven flexible subunits. Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6787–6790. doi: 10.1073/pnas.96.12.6787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Starkova N. N., Koroleva E. P., Rumsh L. D., Ginodman L. M., Rotanova T. V. Mutations in the proteolytic domain of Escherichia coli protease Lon impair the ATPase activity of the enzyme. FEBS Lett. 1998 Jan 30;422(2):218–220. doi: 10.1016/s0014-5793(98)00012-x. [DOI] [PubMed] [Google Scholar]
  21. Twining S. S. Fluorescein isothiocyanate-labeled casein assay for proteolytic enzymes. Anal Biochem. 1984 Nov 15;143(1):30–34. doi: 10.1016/0003-2697(84)90553-0. [DOI] [PubMed] [Google Scholar]
  22. Van Dyck L., Pearce D. A., Sherman F. PIM1 encodes a mitochondrial ATP-dependent protease that is required for mitochondrial function in the yeast Saccharomyces cerevisiae. J Biol Chem. 1994 Jan 7;269(1):238–242. [PubMed] [Google Scholar]
  23. Walker J. E., Saraste M., Runswick M. J., Gay N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1(8):945–951. doi: 10.1002/j.1460-2075.1982.tb01276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wang N., Gottesman S., Willingham M. C., Gottesman M. M., Maurizi M. R. A human mitochondrial ATP-dependent protease that is highly homologous to bacterial Lon protease. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11247–11251. doi: 10.1073/pnas.90.23.11247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Waxman L., Goldberg A. L. Protease La, the lon gene product, cleaves specific fluorogenic peptides in an ATP-dependent reaction. J Biol Chem. 1985 Oct 5;260(22):12022–12028. [PubMed] [Google Scholar]
  26. Waxman L., Goldberg A. L. Selectivity of intracellular proteolysis: protein substrates activate the ATP-dependent protease (La). Science. 1986 Apr 25;232(4749):500–503. doi: 10.1126/science.2938257. [DOI] [PubMed] [Google Scholar]
  27. van Dijl J. M., Kutejová E., Suda K., Perecko D., Schatz G., Suzuki C. K. The ATPase and protease domains of yeast mitochondrial Lon: roles in proteolysis and respiration-dependent growth. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10584–10589. doi: 10.1073/pnas.95.18.10584. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES