Abstract
KNI-272 is a powerful HIV-1 protease inhibitor with a reported inhibition constant in the picomolar range. In this paper, a complete experimental dissection of the thermodynamic forces that define the binding affinity of this inhibitor to the wild-type and drug-resistant mutant V82F/184V is presented. Unlike other protease inhibitors, KNI-272 binds to the protease with a favorable binding enthalpy. The origin of the favorable binding enthalpy has been traced to the coupling of the binding reaction to the burial of six water molecules. These bound water molecules, previously identified by NMR studies, optimize the atomic packing at the inhibitor/protein interface enhancing van der Waals and other favorable interactions. These interactions offset the unfavorable enthalpy usually associated with the binding of hydrophobic molecules. The association constant to the drug resistant mutant is 100-500 times weaker. The decrease in binding affinity corresponds to an increase in the Gibbs energy of binding of 3-3.5 kcal/mol, which originates from less favorable enthalpy (1.7 kcal/mol more positive) and entropy changes. Calorimetric binding experiments performed as a function of pH and utilizing buffers with different ionization enthalpies have permitted the dissection of proton linkage effects. According to these experiments, the binding of the inhibitor is linked to the protonation/deprotonation of two groups. In the uncomplexed form these groups have pKs of 6.0 and 4.8, and become 6.6 and 2.9 in the complex. These groups have been identified as one of the aspartates in the catalytic aspartyl dyad in the protease and the isoquinoline nitrogen in the inhibitor molecule. The binding affinity is maximal between pH 5 and pH 6. At those pH values the affinity is close to 6 x 10(10) M(-1) (Kd = 16 pM). Global analysis of the data yield a buffer- and pH-independent binding enthalpy of -6.3 kcal/mol. Under conditions in which the exchange of protons is zero, the Gibbs energy of binding is -14.7 kcal/mol from which a binding entropy of 28 cal/K mol is obtained. Thus, the binding of KNI-272 is both enthalpically and entropically favorable. The structure-based thermodynamic analysis indicates that the allophenylnorstatine nucleus of KNI-272 provides an important scaffold for the design of inhibitors that are less susceptible to resistant mutations.
Full Text
The Full Text of this article is available as a PDF (357.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ala P. J., Huston E. E., Klabe R. M., Jadhav P. K., Lam P. Y., Chang C. H. Counteracting HIV-1 protease drug resistance: structural analysis of mutant proteases complexed with XV638 and SD146, cyclic urea amides with broad specificities. Biochemistry. 1998 Oct 27;37(43):15042–15049. doi: 10.1021/bi980386e. [DOI] [PubMed] [Google Scholar]
- Baker B. M., Murphy K. P. Evaluation of linked protonation effects in protein binding reactions using isothermal titration calorimetry. Biophys J. 1996 Oct;71(4):2049–2055. doi: 10.1016/S0006-3495(96)79403-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baldwin E. T., Bhat T. N., Gulnik S., Liu B., Topol I. A., Kiso Y., Mimoto T., Mitsuya H., Erickson J. W. Structure of HIV-1 protease with KNI-272, a tight-binding transition-state analog containing allophenylnorstatine. Structure. 1995 Jun 15;3(6):581–590. doi: 10.1016/s0969-2126(01)00192-7. [DOI] [PubMed] [Google Scholar]
- Brandts J. F., Lin L. N. Study of strong to ultratight protein interactions using differential scanning calorimetry. Biochemistry. 1990 Jul 24;29(29):6927–6940. doi: 10.1021/bi00481a024. [DOI] [PubMed] [Google Scholar]
- D'Aquino J. A., Gómez J., Hilser V. J., Lee K. H., Amzel L. M., Freire E. The magnitude of the backbone conformational entropy change in protein folding. Proteins. 1996 Jun;25(2):143–156. doi: 10.1002/(SICI)1097-0134(199606)25:2<143::AID-PROT1>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
- Gulnik S. V., Suvorov L. I., Liu B., Yu B., Anderson B., Mitsuya H., Erickson J. W. Kinetic characterization and cross-resistance patterns of HIV-1 protease mutants selected under drug pressure. Biochemistry. 1995 Jul 25;34(29):9282–9287. doi: 10.1021/bi00029a002. [DOI] [PubMed] [Google Scholar]
- Gómez J., Freire E. Thermodynamic mapping of the inhibitor site of the aspartic protease endothiapepsin. J Mol Biol. 1995 Sep 22;252(3):337–350. doi: 10.1006/jmbi.1995.0501. [DOI] [PubMed] [Google Scholar]
- Gómez J., Hilser V. J., Xie D., Freire E. The heat capacity of proteins. Proteins. 1995 Aug;22(4):404–412. doi: 10.1002/prot.340220410. [DOI] [PubMed] [Google Scholar]
- Hilser V. J., Gómez J., Freire E. The enthalpy change in protein folding and binding: refinement of parameters for structure-based calculations. Proteins. 1996 Oct;26(2):123–133. doi: 10.1002/(SICI)1097-0134(199610)26:2<123::AID-PROT2>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
- Hoog S. S., Towler E. M., Zhao B., Doyle M. L., Debouck C., Abdel-Meguid S. S. Human immunodeficiency virus protease ligand specificity conferred by residues outside of the active site cavity. Biochemistry. 1996 Aug 13;35(32):10279–10286. doi: 10.1021/bi960179j. [DOI] [PubMed] [Google Scholar]
- Kiso Y. Design and synthesis of substrate-based peptidomimetic human immunodeficiency virus protease inhibitors containing the hydroxymethylcarbonyl isostere. Biopolymers. 1996;40(2):235–244. doi: 10.1002/(sici)1097-0282(1996)40:2<235::aid-bip3>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]
- Kiso Y., Matsumoto H., Mizumoto S., Kimura T., Fujiwara Y., Akaji K. Small dipeptide-based HIV protease inhibitors containing the hydroxymethylcarbonyl isostere as an ideal transition-state mimic. Biopolymers. 1999;51(1):59–68. doi: 10.1002/(SICI)1097-0282(1999)51:1<59::AID-BIP7>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
- Klabe R. M., Bacheler L. T., Ala P. J., Erickson-Viitanen S., Meek J. L. Resistance to HIV protease inhibitors: a comparison of enzyme inhibition and antiviral potency. Biochemistry. 1998 Jun 16;37(24):8735–8742. doi: 10.1021/bi972555l. [DOI] [PubMed] [Google Scholar]
- Lee K. H., Xie D., Freire E., Amzel L. M. Estimation of changes in side chain configurational entropy in binding and folding: general methods and application to helix formation. Proteins. 1994 Sep;20(1):68–84. doi: 10.1002/prot.340200108. [DOI] [PubMed] [Google Scholar]
- Luque I., Freire E. Structure-based prediction of binding affinities and molecular design of peptide ligands. Methods Enzymol. 1998;295:100–127. doi: 10.1016/s0076-6879(98)95037-6. [DOI] [PubMed] [Google Scholar]
- Luque I., Mayorga O. L., Freire E. Structure-based thermodynamic scale of alpha-helix propensities in amino acids. Biochemistry. 1996 Oct 22;35(42):13681–13688. doi: 10.1021/bi961319s. [DOI] [PubMed] [Google Scholar]
- Luque I., Todd M. J., Gómez J., Semo N., Freire E. Molecular basis of resistance to HIV-1 protease inhibition: a plausible hypothesis. Biochemistry. 1998 Apr 28;37(17):5791–5797. doi: 10.1021/bi9802521. [DOI] [PubMed] [Google Scholar]
- Markowitz M., Mo H., Kempf D. J., Norbeck D. W., Bhat T. N., Erickson J. W., Ho D. D. Selection and analysis of human immunodeficiency virus type 1 variants with increased resistance to ABT-538, a novel protease inhibitor. J Virol. 1995 Feb;69(2):701–706. doi: 10.1128/jvi.69.2.701-706.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mimoto T., Kato R., Takaku H., Nojima S., Terashima K., Misawa S., Fukazawa T., Ueno T., Sato H., Shintani M. Structure-activity relationship of small-sized HIV protease inhibitors containing allophenylnorstatine. J Med Chem. 1999 May 20;42(10):1789–1802. doi: 10.1021/jm980637h. [DOI] [PubMed] [Google Scholar]
- Murphy K. P., Freire E. Thermodynamics of structural stability and cooperative folding behavior in proteins. Adv Protein Chem. 1992;43:313–361. doi: 10.1016/s0065-3233(08)60556-2. [DOI] [PubMed] [Google Scholar]
- Todd M. J., Freire E. The effect of inhibitor binding on the structural stability and cooperativity of the HIV-1 protease. Proteins. 1999 Aug 1;36(2):147–156. doi: 10.1002/(sici)1097-0134(19990801)36:2<147::aid-prot2>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
- Todd M. J., Semo N., Freire E. The structural stability of the HIV-1 protease. J Mol Biol. 1998 Oct 23;283(2):475–488. doi: 10.1006/jmbi.1998.2090. [DOI] [PubMed] [Google Scholar]
- Trylska J., Antosiewicz J., Geller M., Hodge C. N., Klabe R. M., Head M. S., Gilson M. K. Thermodynamic linkage between the binding of protons and inhibitors to HIV-1 protease. Protein Sci. 1999 Jan;8(1):180–195. doi: 10.1110/ps.8.1.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Velazquez-Campoy A., Todd M. J., Freire E. HIV-1 protease inhibitors: enthalpic versus entropic optimization of the binding affinity. Biochemistry. 2000 Mar 7;39(9):2201–2207. doi: 10.1021/bi992399d. [DOI] [PubMed] [Google Scholar]
- Wang Y. X., Freedberg D. I., Grzesiek S., Torchia D. A., Wingfield P. T., Kaufman J. D., Stahl S. J., Chang C. H., Hodge C. N. Mapping hydration water molecules in the HIV-1 protease/DMP323 complex in solution by NMR spectroscopy. Biochemistry. 1996 Oct 1;35(39):12694–12704. doi: 10.1021/bi9610764. [DOI] [PubMed] [Google Scholar]
- Wang Y. X., Freedberg D. I., Yamazaki T., Wingfield P. T., Stahl S. J., Kaufman J. D., Kiso Y., Torchia D. A. Solution NMR evidence that the HIV-1 protease catalytic aspartyl groups have different ionization states in the complex formed with the asymmetric drug KNI-272. Biochemistry. 1996 Aug 6;35(31):9945–9950. doi: 10.1021/bi961268z. [DOI] [PubMed] [Google Scholar]
- Yoshimura K., Kato R., Yusa K., Kavlick M. F., Maroun V., Nguyen A., Mimoto T., Ueno T., Shintani M., Falloon J. JE-2147: a dipeptide protease inhibitor (PI) that potently inhibits multi-PI-resistant HIV-1. Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8675–8680. doi: 10.1073/pnas.96.15.8675. [DOI] [PMC free article] [PubMed] [Google Scholar]