Abstract
Bile-salt activated lipase (BAL) is a pancreatic enzyme that digests a variety of lipids in the small intestine. A distinct property of BAL is its dependency on bile salts in hydrolyzing substrates of long acyl chains or bulky alcoholic motifs. A crystal structure of the catalytic domain of human BAL (residues 1-538) with two surface mutations (N186D and A298D), which were introduced in attempting to facilitate crystallization, has been determined at 2.3 A resolution. The crystal form belongs to space group P2(1)2(1)2(1) with one monomer per asymmetric unit, and the protein shows an alpha/beta hydrolase fold. In the absence of bound bile salt molecules, the protein possesses a preformed catalytic triad and a functional oxyanion hole. Several surface loops around the active site are mobile, including two loops potentially involved in substrate binding (residues 115-125 and 270-285).
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baba T., Downs D., Jackson K. W., Tang J., Wang C. S. Structure of human milk bile salt activated lipase. Biochemistry. 1991 Jan 15;30(2):500–510. doi: 10.1021/bi00216a028. [DOI] [PubMed] [Google Scholar]
- Barton G. J. ALSCRIPT: a tool to format multiple sequence alignments. Protein Eng. 1993 Jan;6(1):37–40. doi: 10.1093/protein/6.1.37. [DOI] [PubMed] [Google Scholar]
- Bläckberg L., Hernell O. Bile salt-stimulated lipase in human milk. Evidence that bile salt induces lipid binding and activation via binding to different sites. FEBS Lett. 1993 Jun 1;323(3):207–210. doi: 10.1016/0014-5793(93)81340-6. [DOI] [PubMed] [Google Scholar]
- Bruneau N., Lombardo D., Bendayan M. Participation of GRP94-related protein in secretion of pancreatic bile salt-dependent lipase and in its internalization by the intestinal epithelium. J Cell Sci. 1998 Sep;111(Pt 17):2665–2679. doi: 10.1242/jcs.111.17.2665. [DOI] [PubMed] [Google Scholar]
- Brünger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M., Pannu N. S. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905–921. doi: 10.1107/s0907444998003254. [DOI] [PubMed] [Google Scholar]
- Chen J. C., Miercke L. J., Krucinski J., Starr J. R., Saenz G., Wang X., Spilburg C. A., Lange L. G., Ellsworth J. L., Stroud R. M. Structure of bovine pancreatic cholesterol esterase at 1.6 A: novel structural features involved in lipase activation. Biochemistry. 1998 Apr 14;37(15):5107–5117. doi: 10.1021/bi972989g. [DOI] [PubMed] [Google Scholar]
- DeLano W. L., Ultsch M. H., de Vos A. M., Wells J. A. Convergent solutions to binding at a protein-protein interface. Science. 2000 Feb 18;287(5456):1279–1283. doi: 10.1126/science.287.5456.1279. [DOI] [PubMed] [Google Scholar]
- DiPersio L. P., Carter C. P., Hui D. Y. Exon 11 of the rat cholesterol esterase gene encodes domains important for intracellular processing and bile salt-modulated activity of the protein. Biochemistry. 1994 Mar 22;33(11):3442–3448. doi: 10.1021/bi00177a038. [DOI] [PubMed] [Google Scholar]
- Downs D., Xu Y. Y., Tang J., Wang C. S. Proline-rich domain and glycosylation are not essential for the enzymic activity of bile salt-activated lipase. Kinetic studies of T-BAL, a truncated form of the enzyme, expressed in Escherichia coli. Biochemistry. 1994 Jul 5;33(26):7979–7985. doi: 10.1021/bi00192a001. [DOI] [PubMed] [Google Scholar]
- Ge L., Rudolph P. Simultaneous introduction of multiple mutations using overlap extension PCR. Biotechniques. 1997 Jan;22(1):28–30. doi: 10.2144/97221bm03. [DOI] [PubMed] [Google Scholar]
- Ghosh D., Wawrzak Z., Pletnev V. Z., Li N., Kaiser R., Pangborn W., Jörnvall H., Erman M., Duax W. L. Structure of uncomplexed and linoleate-bound Candida cylindracea cholesterol esterase. Structure. 1995 Mar 15;3(3):279–288. doi: 10.1016/s0969-2126(01)00158-7. [DOI] [PubMed] [Google Scholar]
- Grochulski P., Bouthillier F., Kazlauskas R. J., Serreqi A. N., Schrag J. D., Ziomek E., Cygler M. Analogs of reaction intermediates identify a unique substrate binding site in Candida rugosa lipase. Biochemistry. 1994 Mar 29;33(12):3494–3500. doi: 10.1021/bi00178a005. [DOI] [PubMed] [Google Scholar]
- Grochulski P., Li Y., Schrag J. D., Cygler M. Two conformational states of Candida rugosa lipase. Protein Sci. 1994 Jan;3(1):82–91. doi: 10.1002/pro.5560030111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hernell O. Human milk lipases. III. Physiological implications of the bile salt-stimulated lipase. Eur J Clin Invest. 1975 Jun 12;5(3):267–272. doi: 10.1111/j.1365-2362.1975.tb02294.x. [DOI] [PubMed] [Google Scholar]
- Howles P. N., Carter C. P., Hui D. Y. Dietary free and esterified cholesterol absorption in cholesterol esterase (bile salt-stimulated lipase) gene-targeted mice. J Biol Chem. 1996 Mar 22;271(12):7196–7202. doi: 10.1074/jbc.271.12.7196. [DOI] [PubMed] [Google Scholar]
- Howles P. N., Stemmerman G. N., Fenoglio-Preiser C. M., Hui D. Y. Carboxyl ester lipase activity in milk prevents fat-derived intestinal injury in neonatal mice. Am J Physiol. 1999 Sep;277(3 Pt 1):G653–G661. doi: 10.1152/ajpgi.1999.277.3.G653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hui D. Y., Kissel J. A. Sequence identity between human pancreatic cholesterol esterase and bile salt-stimulated milk lipase. FEBS Lett. 1990 Dec 10;276(1-2):131–134. doi: 10.1016/0014-5793(90)80525-n. [DOI] [PubMed] [Google Scholar]
- Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
- Le Petit-Thevenin J., Bruneau N., Nobili O., Lombardo D., Vérine A. An intracellular role for pancreatic bile salt-dependent lipase: evidence for modification of lipid turnover in transfected CHO cells. Biochim Biophys Acta. 1998 Aug 28;1393(2-3):307–316. doi: 10.1016/s0005-2760(98)00085-x. [DOI] [PubMed] [Google Scholar]
- Loomes K. M., Senior H. E. Bile salt activation of human cholesterol esterase does not require protein dimerisation. FEBS Lett. 1997 Apr 1;405(3):369–372. doi: 10.1016/s0014-5793(97)00215-9. [DOI] [PubMed] [Google Scholar]
- Loomes K. M. Structural organisation of human bile-salt-activated lipase probed by limited proteolysis and expression of a recombinant truncated variant. Eur J Biochem. 1995 Jun 1;230(2):607–613. doi: 10.1111/j.1432-1033.1995.tb20602.x. [DOI] [PubMed] [Google Scholar]
- Matthews B. W. Solvent content of protein crystals. J Mol Biol. 1968 Apr 28;33(2):491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
- Olivecrona T., Hernell O. Human milk lipases and their possible role in fat digestion. Padiatr Padol. 1976;11(4):600–604. [PubMed] [Google Scholar]
- Ollis D. L., Cheah E., Cygler M., Dijkstra B., Frolow F., Franken S. M., Harel M., Remington S. J., Silman I., Schrag J. The alpha/beta hydrolase fold. Protein Eng. 1992 Apr;5(3):197–211. doi: 10.1093/protein/5.3.197. [DOI] [PubMed] [Google Scholar]
- Pasqualini E., Caillol N., Panicot L., Mas E., Lloubes R., Lombardo D. Molecular cloning of the oncofetal isoform of the human pancreatic bile salt-dependent lipase. J Biol Chem. 1998 Oct 23;273(43):28208–28218. doi: 10.1074/jbc.273.43.28208. [DOI] [PubMed] [Google Scholar]
- Price S. R., Nagai K. Protein engineering as a tool for crystallography. Curr Opin Biotechnol. 1995 Aug;6(4):425–430. doi: 10.1016/0958-1669(95)80072-7. [DOI] [PubMed] [Google Scholar]
- Sbarra V., Bruneau N., Mas E., Hamosh M., Lombardo D., Hamosh P. Molecular cloning of the bile salt-dependent lipase of ferret lactating mammary gland: an overview of functional residues. Biochim Biophys Acta. 1998 Jul 31;1393(1):80–89. doi: 10.1016/s0005-2760(98)00067-8. [DOI] [PubMed] [Google Scholar]
- Spilburg C. A., Cox D. G., Wang X., Bernat B. A., Bosner M. S., Lange L. G. Identification of a species specific regulatory site in human pancreatic cholesterol esterase. Biochemistry. 1995 Nov 28;34(47):15532–15538. doi: 10.1021/bi00047a019. [DOI] [PubMed] [Google Scholar]
- Vahouny G. W., Weersing S., Treadwell C. R. Function of specific bile acids in cholesterol esterase activity in vitro. Biochim Biophys Acta. 1965 Jun 1;98(3):607–616. doi: 10.1016/0005-2760(65)90158-x. [DOI] [PubMed] [Google Scholar]
- Wang C. S., Dashti A., Downs D. Bile salt-activated lipase. Methods Mol Biol. 1999;109:71–79. doi: 10.1385/1-59259-581-2:71. [DOI] [PubMed] [Google Scholar]
- Wang C. S., Hartsuck J. A. Bile salt-activated lipase. A multiple function lipolytic enzyme. Biochim Biophys Acta. 1993 Feb 10;1166(1):1–19. doi: 10.1016/0005-2760(93)90277-g. [DOI] [PubMed] [Google Scholar]
- Wang C. S., Hartsuck J. A., Downs D. Kinetics of acylglycerol sequential hydrolysis by human milk bile salt activated lipase and effect of taurocholate as fatty acid acceptor. Biochemistry. 1988 Jun 28;27(13):4834–4840. doi: 10.1021/bi00413a038. [DOI] [PubMed] [Google Scholar]
- Wang C. S., Lee D. M. Kinetic properties of human milk bile salt-activated lipase: studies using long chain triacylglycerol as substrate. J Lipid Res. 1985 Jul;26(7):824–830. [PubMed] [Google Scholar]
- Wang C. S., Martindale M. E., King M. M., Tang J. Bile-salt-activated lipase: effect on kitten growth rate. Am J Clin Nutr. 1989 Mar;49(3):457–463. doi: 10.1093/ajcn/49.3.457. [DOI] [PubMed] [Google Scholar]
- Wang X., Wang C. S., Tang J., Dyda F., Zhang X. C. The crystal structure of bovine bile salt activated lipase: insights into the bile salt activation mechanism. Structure. 1997 Sep 15;5(9):1209–1218. doi: 10.1016/s0969-2126(97)00271-2. [DOI] [PubMed] [Google Scholar]
