Abstract
Human lysozyme has a structure similar to that of hen lysozyme and differs in amino acid sequence by 51 out of 129 residues with one insertion at the position between 47 and 48 in hen lysozyme. The backbone dynamics of free or (NAG)3-bound human lysozyme has been determined by measurements of 15N nuclear relaxation. The relaxation data were analyzed using the Lipari-Szabo formalism and were compared with those of hen lysozyme, which was already reported (Mine S et al.. 1999, J Mol Biol 286:1547-1565). In this paper, it was found that the backbone dynamics of free human and hen lysozymes showed very similar behavior except for some residues, indicating that the difference in amino acid sequence did not affect the behavior of entire backbone dynamics, but the folded pattern was the major determinant of the internal motion of lysozymes. On the other hand, it was also found that the number of residues in (NAG)3-bound human and hen lysozymes showed an increase or decrease in the order parameters at or near active sites on the binding of (NAG)3, indicating the increase in picosecond to nanosecond. These results suggested that the immobilization of residues upon binding (NAG)3 resulted in an entropy penalty and that this penalty was compensated by mobilizing other residues. However, compared with the internal motions between both ligand-bound human and hen lysozymes, differences in dynamic behavior between them were found at substrate binding sites, reflecting a subtle difference in the substrate-binding mode or efficiency of activity between them.
Full Text
The Full Text of this article is available as a PDF (2.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akke M., Skelton N. J., Kördel J., Palmer A. G., 3rd, Chazin W. J. Effects of ion binding on the backbone dynamics of calbindin D9k determined by 15N NMR relaxation. Biochemistry. 1993 Sep 21;32(37):9832–9844. doi: 10.1021/bi00088a039. [DOI] [PubMed] [Google Scholar]
- Artymiuk P. J., Blake C. C. Refinement of human lysozyme at 1.5 A resolution analysis of non-bonded and hydrogen-bond interactions. J Mol Biol. 1981 Nov 15;152(4):737–762. doi: 10.1016/0022-2836(81)90125-x. [DOI] [PubMed] [Google Scholar]
- Blake C. C., Johnson L. N., Mair G. A., North A. C., Phillips D. C., Sarma V. R. Crystallographic studies of the activity of hen egg-white lysozyme. Proc R Soc Lond B Biol Sci. 1967 Apr 18;167(1009):378–388. doi: 10.1098/rspb.1967.0035. [DOI] [PubMed] [Google Scholar]
- Buck M., Boyd J., Redfield C., MacKenzie D. A., Jeenes D. J., Archer D. B., Dobson C. M. Structural determinants of protein dynamics: analysis of 15N NMR relaxation measurements for main-chain and side-chain nuclei of hen egg white lysozyme. Biochemistry. 1995 Mar 28;34(12):4041–4055. doi: 10.1021/bi00012a023. [DOI] [PubMed] [Google Scholar]
- Buck M., Schwalbe H., Dobson C. M. Main-chain dynamics of a partially folded protein: 15N NMR relaxation measurements of hen egg white lysozyme denatured in trifluoroethanol. J Mol Biol. 1996 Apr 5;257(3):669–683. doi: 10.1006/jmbi.1996.0193. [DOI] [PubMed] [Google Scholar]
- Cheetham J. C., Artymiuk P. J., Phillips D. C. Refinement of an enzyme complex with inhibitor bound at partial occupancy. Hen egg-white lysozyme and tri-N-acetylchitotriose at 1.75 A resolution. J Mol Biol. 1992 Apr 5;224(3):613–628. doi: 10.1016/0022-2836(92)90548-x. [DOI] [PubMed] [Google Scholar]
- Clore G. M., Driscoll P. C., Wingfield P. T., Gronenborn A. M. Analysis of the backbone dynamics of interleukin-1 beta using two-dimensional inverse detected heteronuclear 15N-1H NMR spectroscopy. Biochemistry. 1990 Aug 14;29(32):7387–7401. doi: 10.1021/bi00484a006. [DOI] [PubMed] [Google Scholar]
- Delaglio F., Grzesiek S., Vuister G. W., Zhu G., Pfeifer J., Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995 Nov;6(3):277–293. doi: 10.1007/BF00197809. [DOI] [PubMed] [Google Scholar]
- Eliezer D., Yao J., Dyson H. J., Wright P. E. Structural and dynamic characterization of partially folded states of apomyoglobin and implications for protein folding. Nat Struct Biol. 1998 Feb;5(2):148–155. doi: 10.1038/nsb0298-148. [DOI] [PubMed] [Google Scholar]
- Gagné S. M., Tsuda S., Spyracopoulos L., Kay L. E., Sykes B. D. Backbone and methyl dynamics of the regulatory domain of troponin C: anisotropic rotational diffusion and contribution of conformational entropy to calcium affinity. J Mol Biol. 1998 May 8;278(3):667–686. doi: 10.1006/jmbi.1998.1723. [DOI] [PubMed] [Google Scholar]
- Herning T., Yutani K., Inaka K., Kuroki R., Matsushima M., Kikuchi M. Role of proline residues in human lysozyme stability: a scanning calorimetric study combined with X-ray structure analysis of proline mutants. Biochemistry. 1992 Aug 11;31(31):7077–7085. doi: 10.1021/bi00146a008. [DOI] [PubMed] [Google Scholar]
- Hooke S. D., Radford S. E., Dobson C. M. The refolding of human lysozyme: a comparison with the structurally homologous hen lysozyme. Biochemistry. 1994 May 17;33(19):5867–5876. doi: 10.1021/bi00185a026. [DOI] [PubMed] [Google Scholar]
- Kay L. E., Torchia D. A., Bax A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry. 1989 Nov 14;28(23):8972–8979. doi: 10.1021/bi00449a003. [DOI] [PubMed] [Google Scholar]
- Kuramitsu S., Ikeda K., Hamaguchi K., Fujio H., Amano T. Ionization constants of Glu 35 and Asp 52 in hen, turkey, and human lysozymes. J Biochem. 1974 Oct;76(4):671–683. [PubMed] [Google Scholar]
- Kördel J., Skelton N. J., Akke M., Palmer A. G., 3rd, Chazin W. J. Backbone dynamics of calcium-loaded calbindin D9k studied by two-dimensional proton-detected 15N NMR spectroscopy. Biochemistry. 1992 May 26;31(20):4856–4866. doi: 10.1021/bi00135a017. [DOI] [PubMed] [Google Scholar]
- Marion D., Driscoll P. C., Kay L. E., Wingfield P. T., Bax A., Gronenborn A. M., Clore G. M. Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1 beta. Biochemistry. 1989 Jul 25;28(15):6150–6156. doi: 10.1021/bi00441a004. [DOI] [PubMed] [Google Scholar]
- Mildvan A. S. Mechanism of enzyme action. Annu Rev Biochem. 1974;43(0):357–399. doi: 10.1146/annurev.bi.43.070174.002041. [DOI] [PubMed] [Google Scholar]
- Mine S., Tate S., Ueda T., Kainosho M., Imoto T. Analysis of the relationship between enzyme activity and its internal motion using nuclear magnetic resonance: 15N relaxation studies of wild-type and mutant lysozyme. J Mol Biol. 1999 Mar 12;286(5):1547–1565. doi: 10.1006/jmbi.1999.2572. [DOI] [PubMed] [Google Scholar]
- Mine S., Ueda T., Hashimoto Y., Tanaka Y., Imoto T. High-level expression of uniformly 15N-labeled hen lysozyme in Pichia pastoris and identification of the site in hen lysozyme where phosphate ion binds using NMR measurements. FEBS Lett. 1999 Apr 1;448(1):33–37. doi: 10.1016/s0014-5793(99)00332-4. [DOI] [PubMed] [Google Scholar]
- Muraki M., Goda S., Nagahora H., Harata K. Importance of van der Waals contact between Glu 35 and Trp 109 to the catalytic action of human lysozyme. Protein Sci. 1997 Feb;6(2):473–476. doi: 10.1002/pro.5560060227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muraki M., Harata K., Jigami Y. Dissection of the functional role of structural elements of tyrosine-63 in the catalytic action of human lysozyme. Biochemistry. 1992 Sep 29;31(38):9212–9219. doi: 10.1021/bi00153a014. [DOI] [PubMed] [Google Scholar]
- Ohkubo T., Taniyama Y., Kikuchi M. 1H and 15N NMR study of human lysozyme. J Biochem. 1991 Dec;110(6):1022–1029. doi: 10.1093/oxfordjournals.jbchem.a123672. [DOI] [PubMed] [Google Scholar]
- Post C. B., Dobson C. M., Karplus M. A molecular dynamics analysis of protein structural elements. Proteins. 1989;5(4):337–354. doi: 10.1002/prot.340050409. [DOI] [PubMed] [Google Scholar]
- Prompers J. J., Groenewegen A., Hilbers C. W., Pepermans H. A. Backbone dynamics of Fusarium solani pisi cutinase probed by nuclear magnetic resonance: the lack of interfacial activation revisited. Biochemistry. 1999 Apr 27;38(17):5315–5327. doi: 10.1021/bi9827215. [DOI] [PubMed] [Google Scholar]
- Schindler M., Assaf Y., Sharon N., Chipman D. M. Mechanism of lysozyme catalysis: role of ground-state strain in subsite D in hen egg-white and human lysozymes. Biochemistry. 1977 Feb 8;16(3):423–431. doi: 10.1021/bi00622a013. [DOI] [PubMed] [Google Scholar]
- Schwalbe H., Fiebig K. M., Buck M., Jones J. A., Grimshaw S. B., Spencer A., Glaser S. J., Smith L. J., Dobson C. M. Structural and dynamical properties of a denatured protein. Heteronuclear 3D NMR experiments and theoretical simulations of lysozyme in 8 M urea. Biochemistry. 1997 Jul 22;36(29):8977–8991. doi: 10.1021/bi970049q. [DOI] [PubMed] [Google Scholar]
- Stivers J. T., Abeygunawardana C., Mildvan A. S. 15N NMR relaxation studies of free and inhibitor-bound 4-oxalocrotonate tautomerase: backbone dynamics and entropy changes of an enzyme upon inhibitor binding. Biochemistry. 1996 Dec 17;35(50):16036–16047. doi: 10.1021/bi961834q. [DOI] [PubMed] [Google Scholar]
- Tate S., Ohno A., Seeram S. S., Hiraga K., Oda K., Kainosho M. Elucidation of the mode of interaction of thermolysin with a proteinaceous metalloproteinase inhibitor, SMPI, based on a model complex structure and a structural dynamics analysis. J Mol Biol. 1998 Sep 18;282(2):435–446. doi: 10.1006/jmbi.1998.2023. [DOI] [PubMed] [Google Scholar]
- Tjandra N., Wingfield P., Stahl S., Bax A. Anisotropic rotational diffusion of perdeuterated HIV protease from 15N NMR relaxation measurements at two magnetic fields. J Biomol NMR. 1996 Oct;8(3):273–284. doi: 10.1007/BF00410326. [DOI] [PubMed] [Google Scholar]
- Ueda T., Tsurumaru M., Imoto T. Kinetic measurement of the interaction between a lysozyme and its immobilized substrate analogue by means of surface plasmon resonance. J Biochem. 1998 Oct;124(4):712–716. doi: 10.1093/oxfordjournals.jbchem.a022171. [DOI] [PubMed] [Google Scholar]
- Wong K. B., Daggett V. Barstar has a highly dynamic hydrophobic core: evidence from molecular dynamics simulations and nuclear magnetic resonance relaxation data. Biochemistry. 1998 Aug 11;37(32):11182–11192. doi: 10.1021/bi980552i. [DOI] [PubMed] [Google Scholar]
- Zhang W., Smithgall T. E., Gmeiner W. H. Self-association and backbone dynamics of the hck SH2 domain in the free and phosphopeptide-complexed forms. Biochemistry. 1998 May 19;37(20):7119–7126. doi: 10.1021/bi972077e. [DOI] [PubMed] [Google Scholar]
- Zídek L., Novotny M. V., Stone M. J. Increased protein backbone conformational entropy upon hydrophobic ligand binding. Nat Struct Biol. 1999 Dec;6(12):1118–1121. doi: 10.1038/70057. [DOI] [PubMed] [Google Scholar]