Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Sep;9(9):1730–1742. doi: 10.1110/ps.9.9.1730

Tryptophanyl fluorescence lifetime distribution of hyperthermophilic beta-glycosidase from molecular dynamics simulation: a comparison with the experimental data.

E Bismuto 1, P L Martelli 1, R Casadio 1, G Irace 1
PMCID: PMC2144707  PMID: 11045619

Abstract

A molecular dynamics simulation approach has been utilized to understand the unusual fluorescence emission decay observed for beta-glycosidase from the hyperthermophilic bacterium Solfolobus sulfotaricus (Sbeta gly), a tetrameric enzyme containing 17 tryptophanyl residues for each subunit. The tryptophanyl emission decay of Sbeta gly results from a bimodal distribution of fluorescence lifetimes with a short-lived component centered at 2.5 ns and a long-lived one at 7.4 ns (Bismuto E, Nucci R, Rossi M, Irace G, 1999, Proteins 27:71-79). From the examination of the trajectories of the side chains capable of causing intramolecular quenching for each tryptophan microenvironment and using a modified Stern-Volmer model for the emission quenching processes, we calculated the fluorescence lifetime for each tryptophanyl residue of Sbeta gly at two different temperatures, i.e., 300 and 365 K. The highest temperature was chosen because in this condition Sbeta gly evidences a maximum in its catalytic activity and is stable for a very long time. The calculated lifetime distributions overlap those experimentally determined. Moreover, the majority of trytptophanyl residues having longer lifetimes correspond to those originally identified by inspection of the crystallographic structure. The tryptophanyl lifetimes appear to be a complex function of several variables, such as microenvironment viscosity, solvent accessibility, the chemical structure of quencher side chains, and side-chain dynamics. The lifetime calculation by MD simulation can be used to validate a predicted structure by comparing the theoretical data with the experimental fluorescence decay results.

Full Text

The Full Text of this article is available as a PDF (4.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguilar C. F., Sanderson I., Moracci M., Ciaramella M., Nucci R., Rossi M., Pearl L. H. Crystal structure of the beta-glycosidase from the hyperthermophilic archeon Sulfolobus solfataricus: resilience as a key factor in thermostability. J Mol Biol. 1997 Sep 5;271(5):789–802. doi: 10.1006/jmbi.1997.1215. [DOI] [PubMed] [Google Scholar]
  2. Alcala J. R., Gratton E., Prendergast F. G. Interpretation of fluorescence decays in proteins using continuous lifetime distributions. Biophys J. 1987 Jun;51(6):925–936. doi: 10.1016/S0006-3495(87)83420-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beechem J. M. Global analysis of biochemical and biophysical data. Methods Enzymol. 1992;210:37–54. doi: 10.1016/0076-6879(92)10004-w. [DOI] [PubMed] [Google Scholar]
  4. Bismuto E., Irace G., D'Auria S., Rossi M., Nucci R. Multitryptophan-fluorescence-emission decay of beta-glycosidase from the extremely thermophilic archaeon Sulfolobus solfataricus. Eur J Biochem. 1997 Feb 15;244(1):53–58. doi: 10.1111/j.1432-1033.1997.00053.x. [DOI] [PubMed] [Google Scholar]
  5. Callis P. R. 1La and 1Lb transitions of tryptophan: applications of theory and experimental observations to fluorescence of proteins. Methods Enzymol. 1997;278:113–150. doi: 10.1016/s0076-6879(97)78009-1. [DOI] [PubMed] [Google Scholar]
  6. Chen Y., Barkley M. D. Toward understanding tryptophan fluorescence in proteins. Biochemistry. 1998 Jul 14;37(28):9976–9982. doi: 10.1021/bi980274n. [DOI] [PubMed] [Google Scholar]
  7. D'Auria S., Rossi M., Nucci R., Irace G., Bismuto E. Perturbation of conformational dynamics, enzymatic activity, and thermostability of beta-glycosidase from archaeon Sulfolobus solfataricus by pH and sodium dodecyl sulfate detergent. Proteins. 1997 Jan;27(1):71–79. [PubMed] [Google Scholar]
  8. D'Auria S., Rossi M., Nucci R., Irace G., Bismuto E. Perturbation of conformational dynamics, enzymatic activity, and thermostability of beta-glycosidase from archaeon Sulfolobus solfataricus by pH and sodium dodecyl sulfate detergent. Proteins. 1997 Jan;27(1):71–79. [PubMed] [Google Scholar]
  9. Frauenfelder H., Parak F., Young R. D. Conformational substates in proteins. Annu Rev Biophys Biophys Chem. 1988;17:451–479. doi: 10.1146/annurev.bb.17.060188.002315. [DOI] [PubMed] [Google Scholar]
  10. Lakowicz J. R., Laczko G., Cherek H., Gratton E., Limkeman M. Analysis of fluorescence decay kinetics from variable-frequency phase shift and modulation data. Biophys J. 1984 Oct;46(4):463–477. doi: 10.1016/S0006-3495(84)84043-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Pisani F. M., Rella R., Raia C. A., Rozzo C., Nucci R., Gambacorta A., De Rosa M., Rossi M. Thermostable beta-galactosidase from the archaebacterium Sulfolobus solfataricus. Purification and properties. Eur J Biochem. 1990 Jan 26;187(2):321–328. doi: 10.1111/j.1432-1033.1990.tb15308.x. [DOI] [PubMed] [Google Scholar]
  12. Sayle R. A., Milner-White E. J. RASMOL: biomolecular graphics for all. Trends Biochem Sci. 1995 Sep;20(9):374–374. doi: 10.1016/s0968-0004(00)89080-5. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES