Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Sep;9(9):1685–1699. doi: 10.1110/ps.9.9.1685

High resolution refinement of beta-galactosidase in a new crystal form reveals multiple metal-binding sites and provides a structural basis for alpha-complementation.

D H Juers 1, R H Jacobson 1, D Wigley 1, X J Zhang 1, R E Huber 1, D E Tronrud 1, B W Matthews 1
PMCID: PMC2144713  PMID: 11045615

Abstract

The unrefined fold of Escherichia coli beta-galactosidase based on a monoclinic crystal form with four independent tetramers has been reported previously. Here, we describe a new, orthorhombic form with one tetramer per asymmetric unit that has permitted refinement of the structure at 1.7 A resolution. This high-resolution analysis has confirmed the original description of the structure and revealed new details. An essential magnesium ion, identified at the active site in the monoclinic crystals, is also seen in the orthorhombic form. Additional putative magnesium binding sites are also seen. Sodium ions are also known to affect catalysis, and five putative binding sites have been identified, one close to the active site. In a crevice on the protein surface, five linked five-membered solvent rings form a partial clathrate-like structure. Some other unusual aspects of the structure include seven apparent cis-peptide bonds, four of which are proline, and several internal salt-bridge networks. Deep solvent-filled channels and tunnels extend across the surface of the molecule and pass through the center of the tetramer. Because of these departures from a compact globular shape, the molecule is not well characterized by prior empirical relationships between the mass and surface area of proteins. The 50 or so residues at the amino terminus have a largely extended conformation and mostly lie across the surface of the protein. At the same time, however, segment 13-21 contributes to a subunit interface, and residues 29-33 pass through a "tunnel" formed by a domain interface. Taken together, the overall arrangement provides a structural basis for the phenomenon of alpha-complementation.

Full Text

The Full Text of this article is available as a PDF (4.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. APPEL S. H., ALPERS D. H., TOMKINS G. M. MULTIPLE MOLECULAR FORMS OF BETA-GALACTOSIDASE. J Mol Biol. 1965 Jan;11:12–22. doi: 10.1016/s0022-2836(65)80167-x. [DOI] [PubMed] [Google Scholar]
  2. Breul A., Kuchinke W., von Wilcken-Bergmann B., Müller-Hill B. Linker mutagenesis in the lacZ gene of Escherichia coli yields variants of active beta-galactosidase. Eur J Biochem. 1991 Jan 1;195(1):191–194. doi: 10.1111/j.1432-1033.1991.tb15694.x. [DOI] [PubMed] [Google Scholar]
  3. Connolly M. L. The molecular surface package. J Mol Graph. 1993 Jun;11(2):139–141. doi: 10.1016/0263-7855(93)87010-3. [DOI] [PubMed] [Google Scholar]
  4. Edwards L. A., Tian M. R., Huber R. E., Fowler A. V. The use of limited proteolysis to probe interdomain and active site regions of beta-galactosidase (Escherichia coli). J Biol Chem. 1988 Feb 5;263(4):1848–1854. [PubMed] [Google Scholar]
  5. Esnouf R. M. Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. Acta Crystallogr D Biol Crystallogr. 1999 Apr;55(Pt 4):938–940. doi: 10.1107/s0907444998017363. [DOI] [PubMed] [Google Scholar]
  6. Fowler A. V., Zabin I. Amino acid sequence of beta-galactosidase. XI. Peptide ordering procedures and the complete sequence. J Biol Chem. 1978 Aug 10;253(15):5521–5525. [PubMed] [Google Scholar]
  7. Fowler A. V., Zabin I. Purification, structure, and properties of hybrid beta-galactosidase proteins. J Biol Chem. 1983 Dec 10;258(23):14354–14358. [PubMed] [Google Scholar]
  8. Gallagher C. N., Huber R. E. Stabilities of uncomplemented and complemented M15 beta-galactosidase (Escherichia coli) and the relationship to alpha-complementation. Biochem Cell Biol. 1999;77(2):109–118. doi: 10.1139/o99-025. [DOI] [PubMed] [Google Scholar]
  9. Gebler J. C., Aebersold R., Withers S. G. Glu-537, not Glu-461, is the nucleophile in the active site of (lac Z) beta-galactosidase from Escherichia coli. J Biol Chem. 1992 Jun 5;267(16):11126–11130. [PubMed] [Google Scholar]
  10. JACOB F., MONOD J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961 Jun;3:318–356. doi: 10.1016/s0022-2836(61)80072-7. [DOI] [PubMed] [Google Scholar]
  11. Jacobson R. H., Matthews B. W. Crystallization of beta-galactosidase from Escherichia coli. J Mol Biol. 1992 Feb 20;223(4):1177–1182. doi: 10.1016/0022-2836(92)90269-p. [DOI] [PubMed] [Google Scholar]
  12. Jacobson R. H., Zhang X. J., DuBose R. F., Matthews B. W. Three-dimensional structure of beta-galactosidase from E. coli. Nature. 1994 Jun 30;369(6483):761–766. doi: 10.1038/369761a0. [DOI] [PubMed] [Google Scholar]
  13. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  14. Juers D. H., Huber R. E., Matthews B. W. Structural comparisons of TIM barrel proteins suggest functional and evolutionary relationships between beta-galactosidase and other glycohydrolases. Protein Sci. 1999 Jan;8(1):122–136. doi: 10.1110/ps.8.1.122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. KARLSSON U., KOORAJIAN S., ZABIN I., SJOESTRAND F. S., MILLER A. HIGH RESOLUTION ELECTRON MICROSCOPY ON HIGHLY PURIFIED BETA-GALACTOSIDASE FROM ESCHERICHIA COLI. J Ultrastruct Res. 1964 Jun;10:457–469. doi: 10.1016/s0022-5320(64)80022-8. [DOI] [PubMed] [Google Scholar]
  16. Kalnins A., Otto K., Rüther U., Müller-Hill B. Sequence of the lacZ gene of Escherichia coli. EMBO J. 1983;2(4):593–597. doi: 10.1002/j.1460-2075.1983.tb01468.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lamzin V. S., Wilson K. S. Automated refinement of protein models. Acta Crystallogr D Biol Crystallogr. 1993 Jan 1;49(Pt 1):129–147. doi: 10.1107/S0907444992008886. [DOI] [PubMed] [Google Scholar]
  18. Miller S., Lesk A. M., Janin J., Chothia C. The accessible surface area and stability of oligomeric proteins. 1987 Aug 27-Sep 2Nature. 328(6133):834–836. doi: 10.1038/328834a0. [DOI] [PubMed] [Google Scholar]
  19. Müller-Hill B., Kania J. Lac repressor can be fused to beta-galactosidase. Nature. 1974 Jun 7;249(457):561–563. doi: 10.1038/249561a0. [DOI] [PubMed] [Google Scholar]
  20. Nichtl A., Buchner J., Jaenicke R., Rudolph R., Scheibel T. Folding and association of beta-Galactosidase. J Mol Biol. 1998 Oct 9;282(5):1083–1091. doi: 10.1006/jmbi.1998.2075. [DOI] [PubMed] [Google Scholar]
  21. Richard J. P., Huber R. E., Lin S., Heo C., Amyes T. L. Structure-reactivity relationships for beta-galactosidase (Escherichia coli, lac Z). 3. Evidence that Glu-461 participates in Brønsted acid-base catalysis of beta-D-galactopyranosyl group transfer. Biochemistry. 1996 Sep 24;35(38):12377–12386. doi: 10.1021/bi961028j. [DOI] [PubMed] [Google Scholar]
  22. Sinnott M. L., Withers S. G. The necessity of magnesium cation for acid assistance aglycone departure in catalysis by Escherichia coli (lacZ) beta-galactosidase. Biochem J. 1978 Nov 1;175(2):539–546. doi: 10.1042/bj1750539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tong L. A., Rossmann M. G. The locked rotation function. Acta Crystallogr A. 1990 Oct 1;46(Pt 10):783–792. doi: 10.1107/s0108767390005530. [DOI] [PubMed] [Google Scholar]
  24. Tronrud D. E. TNT refinement package. Methods Enzymol. 1997;277:306–319. doi: 10.1016/s0076-6879(97)77017-4. [DOI] [PubMed] [Google Scholar]
  25. Ullmann A. Complementation in beta-galactosidase: from protein structure to genetic engineering. Bioessays. 1992 Mar;14(3):201–205. doi: 10.1002/bies.950140311. [DOI] [PubMed] [Google Scholar]
  26. Ullmann A., Jacob F., Monod J. Characterization by in vitro complementation of a peptide corresponding to an operator-proximal segment of the beta-galactosidase structural gene of Escherichia coli. J Mol Biol. 1967 Mar 14;24(2):339–343. doi: 10.1016/0022-2836(67)90341-5. [DOI] [PubMed] [Google Scholar]
  27. Ullmann A., Perrin D., Jacob F., Monod J. Identification par complémentation in vitro et purification d'un segment peptidique de la beta-galatosidase d'escherichia coli. J Mol Biol. 1965 Jul;12(3):918–923. doi: 10.1016/s0022-2836(65)80338-2. [DOI] [PubMed] [Google Scholar]
  28. Vriend G. WHAT IF: a molecular modeling and drug design program. J Mol Graph. 1990 Mar;8(1):52-6, 29. doi: 10.1016/0263-7855(90)80070-v. [DOI] [PubMed] [Google Scholar]
  29. Zabin I. beta-Galactosidase alpha-complementation. A model of protein-protein interaction. Mol Cell Biochem. 1982 Nov 26;49(2):87–96. doi: 10.1007/BF00242487. [DOI] [PubMed] [Google Scholar]
  30. Zeleny R., Altmann F., Praznik W. A capillary electrophoretic study on the specificity of beta-galactosidases from Aspergillus oryzae, Escherichia coli, Streptococcus pneumoniae, and Canavalia ensiformis (jack bean). Anal Biochem. 1997 Mar 1;246(1):96–101. doi: 10.1006/abio.1996.9973. [DOI] [PubMed] [Google Scholar]
  31. Zhang X. J., Matthews B. W. Enhancement of the method of molecular replacement by incorporation of known structural information. Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):675–686. doi: 10.1107/S0907444994002295. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES