Abstract
The interdomain disulfide bond present in the C-lobe of all the transferrins was postulated to restrict the domain movement resulting in the slow rate of iron uptake and release. In the present study, the conformational stability and iron binding properties of a derivative of the isolated C-lobe of ovotransferrin in which the interdomain disulfide bond, Cys478-Cys671 was selectively reduced and alkylated with iodoacetamide were compared with the disulfide intact form at the endosomal pH of 5.6. Pyrophosphate and chloride mediated iron release kinetics showed no difference between the disulfide-intact and disulfide-reduced/alkylated forms; the two protein forms yielded similar observed rate constants showing an apparent hyperbolic dependency for anion concentrations. The conformational stability evaluated by unfolding and refolding experiments was greater for the disulfide-intact form than for the disulfide-reduced/alkylated form: the deltaG(D)H2O values at 30 degrees C obtained by using urea were 9.0+/-0.8 and 6.0+/-0.4 kJ/mol for the former and latter protein forms, respectively, and the corresponding values obtained by using guanidine hydrochloride were 6.2+/-0.9 and 4.3+/-0.5 kJ/mol. The dissociation constant of iron (kd) was almost the same for the two protein forms, and it varied only subtly with urea concentrations but increased markedly with GdnHCl concentrations. The nonidentical values of deltaG(D)H2O and kd for urea and GdnHCl can be attributed to the ionic nature of the later denaturant, in which chloride anion may influence the structure and iron uptake-release properties of the ovotransferrin C-lobe. Taken together, we conclude that the interdomain disulfide bond has no effect on the iron uptake and release function but significantly decreases the conformational stability in the C-lobe.
Full Text
The Full Text of this article is available as a PDF (399.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aisen P., Listowsky I. Iron transport and storage proteins. Annu Rev Biochem. 1980;49:357–393. doi: 10.1146/annurev.bi.49.070180.002041. [DOI] [PubMed] [Google Scholar]
- Anderson B. F., Baker H. M., Norris G. E., Rumball S. V., Baker E. N. Apolactoferrin structure demonstrates ligand-induced conformational change in transferrins. Nature. 1990 Apr 19;344(6268):784–787. doi: 10.1038/344784a0. [DOI] [PubMed] [Google Scholar]
- Baker E. N., Lindley P. F. New perspectives on the structure and function of transferrins. J Inorg Biochem. 1992 Aug 15;47(3-4):147–160. doi: 10.1016/0162-0134(92)84061-q. [DOI] [PubMed] [Google Scholar]
- Cheuk M. S., Keung W. M., Loh T. T. The effect of pH on the kinetics of iron release from diferric ovotransferrin induced by pyrophosphate. J Inorg Biochem. 1987 Jun;30(2):121–131. doi: 10.1016/0162-0134(87)80048-x. [DOI] [PubMed] [Google Scholar]
- Denisov V. P., Jonsson B. H., Halle B. Hydration of denatured and molten globule proteins. Nat Struct Biol. 1999 Mar;6(3):253–260. doi: 10.1038/6692. [DOI] [PubMed] [Google Scholar]
- Dewan J. C., Mikami B., Hirose M., Sacchettini J. C. Structural evidence for a pH-sensitive dilysine trigger in the hen ovotransferrin N-lobe: implications for transferrin iron release. Biochemistry. 1993 Nov 16;32(45):11963–11968. doi: 10.1021/bi00096a004. [DOI] [PubMed] [Google Scholar]
- ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
- Egan T. J., Zak O., Aisen P. The anion requirement for iron release from transferrin is preserved in the receptor-transferrin complex. Biochemistry. 1993 Aug 17;32(32):8162–8167. doi: 10.1021/bi00083a016. [DOI] [PubMed] [Google Scholar]
- Greene R. F., Jr, Pace C. N. Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, alpha-chymotrypsin, and beta-lactoglobulin. J Biol Chem. 1974 Sep 10;249(17):5388–5393. [PubMed] [Google Scholar]
- He Q. Y., Mason A. B., Tam B. M., MacGillivray R. T., Woodworth R. C. Dual role of Lys206-Lys296 interaction in human transferrin N-lobe: iron-release trigger and anion-binding site. Biochemistry. 1999 Jul 27;38(30):9704–9711. doi: 10.1021/bi990134t. [DOI] [PubMed] [Google Scholar]
- He Q. Y., Mason A. B., Woodworth R. C., Tam B. M., Wadsworth T., MacGillivray R. T. Effects of mutations of aspartic acid 63 on the metal-binding properties of the recombinant N-lobe of human serum transferrin. Biochemistry. 1997 May 6;36(18):5522–5528. doi: 10.1021/bi963028p. [DOI] [PubMed] [Google Scholar]
- Hirose M., Takahashi N., Oe H., Doi E. Analyses of intramolecular disulfide bonds in proteins by polyacrylamide gel electrophoresis following two-step alkylation. Anal Biochem. 1988 Jan;168(1):193–201. doi: 10.1016/0003-2697(88)90028-0. [DOI] [PubMed] [Google Scholar]
- Jameson G. B., Anderson B. F., Norris G. E., Thomas D. H., Baker E. N. Structure of human apolactoferrin at 2.0 A resolution. Refinement and analysis of ligand-induced conformational change. Acta Crystallogr D Biol Crystallogr. 1998 Nov 1;54(Pt 6 2):1319–1335. doi: 10.1107/s0907444998004417. [DOI] [PubMed] [Google Scholar]
- Kilár F., Hjertén S. Unfolding of human serum transferrin in urea studied by high-performance capillary electrophoresis. J Chromatogr. 1993 May 28;638(2):269–276. doi: 10.1016/0021-9673(93)83438-x. [DOI] [PubMed] [Google Scholar]
- Kurokawa H., Dewan J. C., Mikami B., Sacchettini J. C., Hirose M. Crystal structure of hen apo-ovotransferrin. Both lobes adopt an open conformation upon loss of iron. J Biol Chem. 1999 Oct 1;274(40):28445–28452. doi: 10.1074/jbc.274.40.28445. [DOI] [PubMed] [Google Scholar]
- Kurokawa H., Mikami B., Hirose M. Crystal structure of diferric hen ovotransferrin at 2.4 A resolution. J Mol Biol. 1995 Nov 24;254(2):196–207. doi: 10.1006/jmbi.1995.0611. [DOI] [PubMed] [Google Scholar]
- Li Y., Harris W. R., Maxwell A., MacGillivray R. T., Brown T. Kinetic studies on the removal of iron and aluminum from recombinant and site-directed mutant N-lobe half transferrins. Biochemistry. 1998 Oct 6;37(40):14157–14166. doi: 10.1021/bi9810454. [DOI] [PubMed] [Google Scholar]
- Lin L. N., Mason A. B., Woodworth R. C., Brandts J. F. Calorimetric studies of serum transferrin and ovotransferrin. Estimates of domain interactions, and study of the kinetic complexities of ferric ion binding. Biochemistry. 1994 Feb 22;33(7):1881–1888. doi: 10.1021/bi00173a035. [DOI] [PubMed] [Google Scholar]
- Lin L. N., Mason A. B., Woodworth R. C., Brandts J. F. Calorimetric studies of the binding of ferric ions to ovotransferrin and interactions between binding sites. Biochemistry. 1991 Dec 17;30(50):11660–11669. doi: 10.1021/bi00114a008. [DOI] [PubMed] [Google Scholar]
- Mayr L. M., Schmid F. X. Stabilization of a protein by guanidinium chloride. Biochemistry. 1993 Aug 10;32(31):7994–7998. doi: 10.1021/bi00082a021. [DOI] [PubMed] [Google Scholar]
- Mizutani K., Yamashita H., Mikami B., Hirose M. Crystal structure at 1.9 A resolution of the apoovotransferrin N-lobe bound by sulfate anions: implications for the domain opening and iron release mechanism. Biochemistry. 2000 Mar 28;39(12):3258–3265. doi: 10.1021/bi992574q. [DOI] [PubMed] [Google Scholar]
- Muralidhara B. K., Hirose M. Anion-mediated iron release from transferrins. The kinetic and mechanistic model for N-lobe of ovotransferrin. J Biol Chem. 2000 Apr 28;275(17):12463–12469. doi: 10.1074/jbc.275.17.12463. [DOI] [PubMed] [Google Scholar]
- Oe H., Doi E., Hirose M. Amino-terminal and carboxyl-terminal half-molecules of ovotransferrin: preparation by a novel procedure and their interactions. J Biochem. 1988 Jun;103(6):1066–1072. doi: 10.1093/oxfordjournals.jbchem.a122381. [DOI] [PubMed] [Google Scholar]
- Oe H., Takahashi N., Doi E., Hirose M. Effects of anion binding on the conformations of the two domains of ovotransferrin. J Biochem. 1989 Nov;106(5):858–863. doi: 10.1093/oxfordjournals.jbchem.a122942. [DOI] [PubMed] [Google Scholar]
- Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
- Pace C. N., Grimsley G. R., Thomson J. A., Barnett B. J. Conformational stability and activity of ribonuclease T1 with zero, one, and two intact disulfide bonds. J Biol Chem. 1988 Aug 25;263(24):11820–11825. [PubMed] [Google Scholar]
- Shen Z. M., Yang J. T., Feng Y. M., Wu C. S. Conformational stability of porcine serum transferrin. Protein Sci. 1992 Nov;1(11):1477–1484. doi: 10.1002/pro.5560011109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shortle D. Staphylococcal nuclease: a showcase of m-value effects. Adv Protein Chem. 1995;46:217–247. doi: 10.1016/s0065-3233(08)60336-8. [DOI] [PubMed] [Google Scholar]
- Timasheff S. N. Water as ligand: preferential binding and exclusion of denaturants in protein unfolding. Biochemistry. 1992 Oct 20;31(41):9857–9864. doi: 10.1021/bi00156a001. [DOI] [PubMed] [Google Scholar]
- Williams J., Elleman T. C., Kingston I. B., Wilkins A. G., Kuhn K. A. The primary structure of hen ovotransferrin. Eur J Biochem. 1982 Feb;122(2):297–303. doi: 10.1111/j.1432-1033.1982.tb05880.x. [DOI] [PubMed] [Google Scholar]
- Williams J., Moreton K., Goodearl A. D. Selective reduction of a disulphide bridge in hen ovotransferrin. Biochem J. 1985 Jun 15;228(3):661–665. doi: 10.1042/bj2280661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zak O., Aisen P., Crawley J. B., Joannou C. L., Patel K. J., Rafiq M., Evans R. W. Iron release from recombinant N-lobe and mutants of human transferrin. Biochemistry. 1995 Nov 7;34(44):14428–14434. doi: 10.1021/bi00044a020. [DOI] [PubMed] [Google Scholar]
- Zak O., Tam B., MacGillivray R. T., Aisen P. A kinetically active site in the C-lobe of human transferrin. Biochemistry. 1997 Sep 9;36(36):11036–11043. doi: 10.1021/bi970628v. [DOI] [PubMed] [Google Scholar]
- Zou Q., Habermann-Rottinghaus S. M., Murphy K. P. Urea effects on protein stability: hydrogen bonding and the hydrophobic effect. Proteins. 1998 May 1;31(2):107–115. [PubMed] [Google Scholar]