Abstract
The native form of some proteins such as strained plasma serpins (serine protease inhibitors) and the spring-loaded viral membrane fusion proteins are in a metastable state. The metastable native form is thought to be a folding intermediate in which conversion into the most stable state is blocked by a very high kinetic barrier. In an effort to understand how the spontaneous conversion of the metastable native form into the most stable state is prevented, we designed mutations of alpha1-antitrypsin, a prototype serpin, which can bypass the folding barrier. Extending the reactive center loop of alpha1-antitrypsin converts the molecule into a more stable state. Remarkably, a 30-residue loop extension allows conversion into an extremely stable state, which is comparable to the relaxed cleaved form. Biochemical data strongly suggest that the strain release is due to the insertion of the reactive center loop into the major beta-sheet, A sheet, as in the known stable conformations of serpins. Our results clearly show that extending the reactive center loop is sufficient to bypass the folding barrier of alpha1-antitrypsin and suggest that the constrain held by polypeptide connection prevents the conversion of the native form into the lowest energy state.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anfinsen C. B. Principles that govern the folding of protein chains. Science. 1973 Jul 20;181(4096):223–230. doi: 10.1126/science.181.4096.223. [DOI] [PubMed] [Google Scholar]
- Baker D., Agard D. A. Influenza hemagglutinin: kinetic control of protein function. Structure. 1994 Oct 15;2(10):907–910. doi: 10.1016/s0969-2126(94)00091-3. [DOI] [PubMed] [Google Scholar]
- Baker D. Metastable states and folding free energy barriers. Nat Struct Biol. 1998 Dec;5(12):1021–1024. doi: 10.1038/4130. [DOI] [PubMed] [Google Scholar]
- Bruch M., Weiss V., Engel J. Plasma serine proteinase inhibitors (serpins) exhibit major conformational changes and a large increase in conformational stability upon cleavage at their reactive sites. J Biol Chem. 1988 Nov 15;263(32):16626–16630. [PubMed] [Google Scholar]
- Carr C. M., Chaudhry C., Kim P. S. Influenza hemagglutinin is spring-loaded by a metastable native conformation. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14306–14313. doi: 10.1073/pnas.94.26.14306. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carr C. M., Kim P. S. A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell. 1993 May 21;73(4):823–832. doi: 10.1016/0092-8674(93)90260-w. [DOI] [PubMed] [Google Scholar]
- Carrell R. W., Evans D. L., Stein P. E. Mobile reactive centre of serpins and the control of thrombosis. Nature. 1991 Oct 10;353(6344):576–578. doi: 10.1038/353576a0. [DOI] [PubMed] [Google Scholar]
- Chan D. C., Fass D., Berger J. M., Kim P. S. Core structure of gp41 from the HIV envelope glycoprotein. Cell. 1997 Apr 18;89(2):263–273. doi: 10.1016/s0092-8674(00)80205-6. [DOI] [PubMed] [Google Scholar]
- Chen J., Lee K. H., Steinhauer D. A., Stevens D. J., Skehel J. J., Wiley D. C. Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell. 1998 Oct 30;95(3):409–417. doi: 10.1016/s0092-8674(00)81771-7. [DOI] [PubMed] [Google Scholar]
- Creighton T. E. Protein folding. Up the kinetic pathway. Nature. 1992 Mar 19;356(6366):194–195. doi: 10.1038/356194a0. [DOI] [PubMed] [Google Scholar]
- Gallagher T., Gilliland G., Wang L., Bryan P. The prosegment-subtilisin BPN' complex: crystal structure of a specific 'foldase'. Structure. 1995 Sep 15;3(9):907–914. doi: 10.1016/S0969-2126(01)00225-8. [DOI] [PubMed] [Google Scholar]
- Hekman C. M., Loskutoff D. J. Endothelial cells produce a latent inhibitor of plasminogen activators that can be activated by denaturants. J Biol Chem. 1985 Sep 25;260(21):11581–11587. [PubMed] [Google Scholar]
- Hoffman M. Straightening out the protein folding puzzle. Science. 1991 Sep 20;253(5026):1357–1358. doi: 10.1126/science.1896845. [DOI] [PubMed] [Google Scholar]
- Huber R., Carrell R. W. Implications of the three-dimensional structure of alpha 1-antitrypsin for structure and function of serpins. Biochemistry. 1989 Nov 14;28(23):8951–8966. doi: 10.1021/bi00449a001. [DOI] [PubMed] [Google Scholar]
- Im H., Seo E. J., Yu M. H. Metastability in the inhibitory mechanism of human alpha1-antitrypsin. J Biol Chem. 1999 Apr 16;274(16):11072–11077. doi: 10.1074/jbc.274.16.11072. [DOI] [PubMed] [Google Scholar]
- Kwon K. S., Kim J., Shin H. S., Yu M. H. Single amino acid substitutions of alpha 1-antitrypsin that confer enhancement in thermal stability. J Biol Chem. 1994 Apr 1;269(13):9627–9631. [PubMed] [Google Scholar]
- Lawrence D. A. The serpin-proteinase complex revealed. Nat Struct Biol. 1997 May;4(5):339–341. doi: 10.1038/nsb0597-339. [DOI] [PubMed] [Google Scholar]
- Lawrence D., Strandberg L., Grundström T., Ny T. Purification of active human plasminogen activator inhibitor 1 from Escherichia coli. Comparison with natural and recombinant forms purified from eucaryotic cells. Eur J Biochem. 1989 Dec 22;186(3):523–533. doi: 10.1111/j.1432-1033.1989.tb15238.x. [DOI] [PubMed] [Google Scholar]
- Lee K. N., Park S. D., Yu M. H. Probing the native strain iin alpha1-antitrypsin. Nat Struct Biol. 1996 Jun;3(6):497–500. doi: 10.1038/nsb0696-497. [DOI] [PubMed] [Google Scholar]
- Loebermann H., Tokuoka R., Deisenhofer J., Huber R. Human alpha 1-proteinase inhibitor. Crystal structure analysis of two crystal modifications, molecular model and preliminary analysis of the implications for function. J Mol Biol. 1984 Aug 15;177(3):531–557. [PubMed] [Google Scholar]
- Lomas D. A., Elliott P. R., Chang W. S., Wardell M. R., Carrell R. W. Preparation and characterization of latent alpha 1-antitrypsin. J Biol Chem. 1995 Mar 10;270(10):5282–5288. doi: 10.1074/jbc.270.10.5282. [DOI] [PubMed] [Google Scholar]
- Mast A. E., Enghild J. J., Salvesen G. Conformation of the reactive site loop of alpha 1-proteinase inhibitor probed by limited proteolysis. Biochemistry. 1992 Mar 17;31(10):2720–2728. doi: 10.1021/bi00125a012. [DOI] [PubMed] [Google Scholar]
- Mottonen J., Strand A., Symersky J., Sweet R. M., Danley D. E., Geoghegan K. F., Gerard R. D., Goldsmith E. J. Structural basis of latency in plasminogen activator inhibitor-1. Nature. 1992 Jan 16;355(6357):270–273. doi: 10.1038/355270a0. [DOI] [PubMed] [Google Scholar]
- Oas T. G., Kim P. S. A peptide model of a protein folding intermediate. Nature. 1988 Nov 3;336(6194):42–48. doi: 10.1038/336042a0. [DOI] [PubMed] [Google Scholar]
- Orosz A., Wisniewski J., Wu C. Regulation of Drosophila heat shock factor trimerization: global sequence requirements and independence of nuclear localization. Mol Cell Biol. 1996 Dec;16(12):7018–7030. doi: 10.1128/mcb.16.12.7018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patston P. A., Gettins P. G. Significance of secondary structure predictions on the reactive center loop region of serpins: a model for the folding of serpins into a metastable state. FEBS Lett. 1996 Mar 25;383(1-2):87–92. doi: 10.1016/0014-5793(96)00231-1. [DOI] [PubMed] [Google Scholar]
- Ptitsyn O. B., Pain R. H., Semisotnov G. V., Zerovnik E., Razgulyaev O. I. Evidence for a molten globule state as a general intermediate in protein folding. FEBS Lett. 1990 Mar 12;262(1):20–24. doi: 10.1016/0014-5793(90)80143-7. [DOI] [PubMed] [Google Scholar]
- Ryu S. E., Choi H. J., Kwon K. S., Lee K. N., Yu M. H. The native strains in the hydrophobic core and flexible reactive loop of a serine protease inhibitor: crystal structure of an uncleaved alpha1-antitrypsin at 2.7 A. Structure. 1996 Oct 15;4(10):1181–1192. doi: 10.1016/s0969-2126(96)00126-8. [DOI] [PubMed] [Google Scholar]
- Sauter N. K., Mau T., Rader S. D., Agard D. A. Structure of alpha-lytic protease complexed with its pro region. Nat Struct Biol. 1998 Nov;5(11):945–950. doi: 10.1038/2919. [DOI] [PubMed] [Google Scholar]
- Staley J. P., Kim P. S. Role of a subdomain in the folding of bovine pancreatic trypsin inhibitor. Nature. 1990 Apr 12;344(6267):685–688. doi: 10.1038/344685a0. [DOI] [PubMed] [Google Scholar]
- Stein P. E., Carrell R. W. What do dysfunctional serpins tell us about molecular mobility and disease? Nat Struct Biol. 1995 Feb;2(2):96–113. doi: 10.1038/nsb0295-96. [DOI] [PubMed] [Google Scholar]
- Wang Z., Mottonen J., Goldsmith E. J. Kinetically controlled folding of the serpin plasminogen activator inhibitor 1. Biochemistry. 1996 Dec 24;35(51):16443–16448. doi: 10.1021/bi961214p. [DOI] [PubMed] [Google Scholar]
- Wiley D. C., Skehel J. J. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu Rev Biochem. 1987;56:365–394. doi: 10.1146/annurev.bi.56.070187.002053. [DOI] [PubMed] [Google Scholar]