Abstract
The rubredoxin from the cryptomonad Guillardia theta is one of the first examples of a rubredoxin encoded in a eukaryotic organism. The structure of a soluble zinc-substituted 70-residue G. theta rubredoxin lacking the membrane anchor and the thylakoid targeting sequence was determined by multidimensional heteronuclear NMR, representing the first three-dimensional (3D) structure of a eukaryotic rubredoxin. For the structure calculation a strategy was applied in which information about hydrogen bonds was directly inferred from a long-range HNCO experiment, and the dynamics of the protein was deduced from heteronuclear nuclear Overhauser effect data and exchange rates of the amide protons. The structure is well defined, exhibiting average root-mean-square deviations of 0.21 A for the backbone heavy atoms and 0.67 A for all heavy atoms of residues 7-56, and an increased flexibility toward the termini. The structure of this core fold is almost identical to that of prokaryotic rubredoxins. There are, however, significant differences with respect to the charge distribution at the protein surface, suggesting that G. theta rubredoxin exerts a different physiological function compared to the structurally characterized prokaryotic rubredoxins. The amino-terminal residues containing the putative signal peptidase recognition/cleavage site show an increased flexibility compared to the core fold, but still adopt a defined 3D orientation, which is mainly stabilized by nonlocal interactions to residues of the carboxy-terminal region. This orientation might reflect the structural elements and charge pattern necessary for correct signal peptidase recognition of the G. theta rubredoxin precursor.
Full Text
The Full Text of this article is available as a PDF (3.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adman E. T., Sieker L. C., Jensen L. H. Structure of rubredoxin from Desulfovibrio vulgaris at 1.5 A resolution. J Mol Biol. 1991 Jan 20;217(2):337–352. doi: 10.1016/0022-2836(91)90547-j. [DOI] [PubMed] [Google Scholar]
- Barton G. J. ALSCRIPT: a tool to format multiple sequence alignments. Protein Eng. 1993 Jan;6(1):37–40. doi: 10.1093/protein/6.1.37. [DOI] [PubMed] [Google Scholar]
- Beissinger M., Sticht H., Sutter M., Ejchart A., Haehnel W., Rösch P. Solution structure of cytochrome c6 from the thermophilic cyanobacterium Synechococcus elongatus. EMBO J. 1998 Jan 2;17(1):27–36. doi: 10.1093/emboj/17.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blake P. R., Park J. B., Zhou Z. H., Hare D. R., Adams M. W., Summers M. F. Solution-state structure by NMR of zinc-substituted rubredoxin from the marine hyperthermophilic archaebacterium Pyrococcus furiosus. Protein Sci. 1992 Nov;1(11):1508–1521. doi: 10.1002/pro.5560011112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen J. C., Mortenson L. E. Two open reading frames (ORFs) identified near the hydrogenase structural genes in Azotobacter vinelandii, the first ORF may encode for a polypeptide similar to rubredoxins. Biochim Biophys Acta. 1992 May 7;1131(1):122–124. doi: 10.1016/0167-4781(92)90111-c. [DOI] [PubMed] [Google Scholar]
- Dauter Z., Sieker L. C., Wilson K. S. Refinement of rubredoxin from Desulfovibrio vulgaris at 1.0 A with and without restraints. Acta Crystallogr B. 1992 Feb 1;48(Pt 1):42–59. doi: 10.1107/s0108768191010613. [DOI] [PubMed] [Google Scholar]
- Dauter Z., Wilson K. S., Sieker L. C., Moulis J. M., Meyer J. Zinc- and iron-rubredoxins from Clostridium pasteurianum at atomic resolution: a high-precision model of a ZnS4 coordination unit in a protein. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):8836–8840. doi: 10.1073/pnas.93.17.8836. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Day M. W., Hsu B. T., Joshua-Tor L., Park J. B., Zhou Z. H., Adams M. W., Rees D. C. X-ray crystal structures of the oxidized and reduced forms of the rubredoxin from the marine hyperthermophilic archaebacterium Pyrococcus furiosus. Protein Sci. 1992 Nov;1(11):1494–1507. doi: 10.1002/pro.5560011111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eidsness M. K., Burden A. E., Richie K. A., Kurtz D. M., Jr, Scott R. A., Smith E. T., Ichiye T., Beard B., Min T., Kang C. Modulation of the redox potential of the [Fe(SCys)(4)] site in rubredoxin by the orientation of a peptide dipole. Biochemistry. 1999 Nov 9;38(45):14803–14809. doi: 10.1021/bi991661f. [DOI] [PubMed] [Google Scholar]
- Frey M., Sieker L., Payan F., Haser R., Bruschi M., Pepe G., LeGall J. Rubredoxin from Desulfovibrio gigas. A molecular model of the oxidized form at 1.4 A resolution. J Mol Biol. 1987 Oct 5;197(3):525–541. doi: 10.1016/0022-2836(87)90562-6. [DOI] [PubMed] [Google Scholar]
- Gehring K., Ekiel I. H(C)CH-COSY and (H)CCH-COSY experiments for 13C-labeled proteins in H2O solution. J Magn Reson. 1998 Nov;135(1):185–193. doi: 10.1006/jmre.1998.1543. [DOI] [PubMed] [Google Scholar]
- Geissdörfer W., Frosch S. C., Haspel G., Ehrt S., Hillen W. Two genes encoding proteins with similarities to rubredoxin and rubredoxin reductase are required for conversion of dodecane to lauric acid in Acinetobacter calcoaceticus ADP1. Microbiology. 1995 Jun;141(Pt 6):1425–1432. doi: 10.1099/13500872-141-6-1425. [DOI] [PubMed] [Google Scholar]
- Gilson P. R., Maier U. G., McFadden G. I. Size isn't everything: lessons in genetic miniaturisation from nucleomorphs. Curr Opin Genet Dev. 1997 Dec;7(6):800–806. doi: 10.1016/s0959-437x(97)80043-3. [DOI] [PubMed] [Google Scholar]
- Gomes C. M., Silva G., Oliveira S., LeGall J., Liu M. Y., Xavier A. V., Rodrigues-Pousada C., Teixeira M. Studies on the redox centers of the terminal oxidase from Desulfovibrio gigas and evidence for its interaction with rubredoxin. J Biol Chem. 1997 Sep 5;272(36):22502–22508. doi: 10.1074/jbc.272.36.22502. [DOI] [PubMed] [Google Scholar]
- Grodberg J., Dunn J. J. ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J Bacteriol. 1988 Mar;170(3):1245–1253. doi: 10.1128/jb.170.3.1245-1253.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grzesiek S., Bax A. Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins. J Biomol NMR. 1993 Mar;3(2):185–204. doi: 10.1007/BF00178261. [DOI] [PubMed] [Google Scholar]
- Higgins D. G., Bleasby A. J., Fuchs R. CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci. 1992 Apr;8(2):189–191. doi: 10.1093/bioinformatics/8.2.189. [DOI] [PubMed] [Google Scholar]
- Hutchinson E. G., Thornton J. M. PROMOTIF--a program to identify and analyze structural motifs in proteins. Protein Sci. 1996 Feb;5(2):212–220. doi: 10.1002/pro.5560050204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ikura M., Kay L. E., Bax A. Improved three-dimensional 1H-13C-1H correlation spectroscopy of a 13C-labeled protein using constant-time evolution. J Biomol NMR. 1991 Sep;1(3):299–304. doi: 10.1007/BF01875522. [DOI] [PubMed] [Google Scholar]
- Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
- Kay L. E., Torchia D. A., Bax A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry. 1989 Nov 14;28(23):8972–8979. doi: 10.1021/bi00449a003. [DOI] [PubMed] [Google Scholar]
- Kemmink J., Darby N. J., Dijkstra K., Nilges M., Creighton T. E. Structure determination of the N-terminal thioredoxin-like domain of protein disulfide isomerase using multidimensional heteronuclear 13C/15N NMR spectroscopy. Biochemistry. 1996 Jun 18;35(24):7684–7691. doi: 10.1021/bi960335m. [DOI] [PubMed] [Google Scholar]
- Kharrat A., Macias M. J., Gibson T. J., Nilges M., Pastore A. Structure of the dsRNA binding domain of E. coli RNase III. EMBO J. 1995 Jul 17;14(14):3572–3584. doi: 10.1002/j.1460-2075.1995.tb07363.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koide S., Jahnke W., Wright P. E. Measurement of intrinsic exchange rates of amide protons in a 15N-labeled peptide. J Biomol NMR. 1995 Nov;6(3):306–312. doi: 10.1007/BF00197811. [DOI] [PubMed] [Google Scholar]
- McFadden G. I., Gilson P. R., Douglas S. E., Cavalier-Smith T., Hofmann C. J., Maier U. G. Bonsai genomics: sequencing the smallest eukaryotic genomes. Trends Genet. 1997 Feb;13(2):46–49. doi: 10.1016/s0168-9525(97)01010-x. [DOI] [PubMed] [Google Scholar]
- Merritt E. A., Murphy M. E. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr D Biol Crystallogr. 1994 Nov 1;50(Pt 6):869–873. doi: 10.1107/S0907444994006396. [DOI] [PubMed] [Google Scholar]
- Meyer O., Schlegel H. G. Biology of aerobic carbon monoxide-oxidizing bacteria. Annu Rev Microbiol. 1983;37:277–310. doi: 10.1146/annurev.mi.37.100183.001425. [DOI] [PubMed] [Google Scholar]
- Misaki S., Morimoto Y., Ogata M., Yagi T., Higuchi Y., Yasuoka N. Structure determination of rubredoxin from Desulfovibrio vulgaris Miyazaki F in two crystal forms. Acta Crystallogr D Biol Crystallogr. 1999 Feb;55(Pt 2):408–413. doi: 10.1107/s0907444998011810. [DOI] [PubMed] [Google Scholar]
- Mori S., Abeygunawardana C., Johnson M. O., van Zijl P. C. Improved sensitivity of HSQC spectra of exchanging protons at short interscan delays using a new fast HSQC (FHSQC) detection scheme that avoids water saturation. J Magn Reson B. 1995 Jul;108(1):94–98. doi: 10.1006/jmrb.1995.1109. [DOI] [PubMed] [Google Scholar]
- Nilges M. A calculation strategy for the structure determination of symmetric dimers by 1H NMR. Proteins. 1993 Nov;17(3):297–309. doi: 10.1002/prot.340170307. [DOI] [PubMed] [Google Scholar]
- Rensing S. A., Goddemeier M., Hofmann C. J., Maier U. G. The presence of a nucleomorph hsp70 gene is a common feature of Cryptophyta and Chlorarachniophyta. Curr Genet. 1994 Nov-Dec;26(5-6):451–455. doi: 10.1007/BF00309933. [DOI] [PubMed] [Google Scholar]
- Rost B., Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol. 1993 Jul 20;232(2):584–599. doi: 10.1006/jmbi.1993.1413. [DOI] [PubMed] [Google Scholar]
- Seki S., Ikeda A., Ishimoto M. Rubredoxin as an intermediary electron carrier for nitrate reduction by NAD(P)H in Clostridium perfringens. J Biochem. 1988 Apr;103(4):583–584. doi: 10.1093/oxfordjournals.jbchem.a122310. [DOI] [PubMed] [Google Scholar]
- Sieker L. C., Stenkamp R. E., LeGall J. Rubredoxin in crystalline state. Methods Enzymol. 1994;243:203–216. doi: 10.1016/0076-6879(94)43016-0. [DOI] [PubMed] [Google Scholar]
- Stenkamp R. E., Sieker L. C., Jensen L. H. The structure of rubredoxin from Desulfovibrio desulfuricans strain 27774 at 1.5 A resolution. Proteins. 1990;8(4):352–364. doi: 10.1002/prot.340080409. [DOI] [PubMed] [Google Scholar]
- Stewart D. E., Legall J., Moura I., Moura J. J., Peck H. D., Jr, Xavier A. V., Weiner P. K., Wampler J. E. Electron transport in sulfate-reducing bacteria. Molecular modeling and NMR studies of the rubredoxin--tetraheme-cytochrome-c3 complex. Eur J Biochem. 1989 Nov 20;185(3):695–700. doi: 10.1111/j.1432-1033.1989.tb15168.x. [DOI] [PubMed] [Google Scholar]
- Sticht H., Rösch P. The structure of iron-sulfur proteins. Prog Biophys Mol Biol. 1998;70(2):95–136. doi: 10.1016/s0079-6107(98)00027-3. [DOI] [PubMed] [Google Scholar]
- Talluri S., Wagner G. An optimized 3D NOESY-HSQC. J Magn Reson B. 1996 Aug;112(2):200–205. doi: 10.1006/jmrb.1996.0132. [DOI] [PubMed] [Google Scholar]
- Watenpaugh K. D., Sieker L. C., Jensen L. H. The structure of rubredoxin at 1.2 A resolution. J Mol Biol. 1979 Jul 5;131(3):509–522. doi: 10.1016/0022-2836(79)90005-6. [DOI] [PubMed] [Google Scholar]
- Zhang W., Smithgall T. E., Gmeiner W. H. Three-dimensional structure of the Hck SH2 domain in solution. J Biomol NMR. 1997 Oct;10(3):263–272. doi: 10.1023/a:1018386217930. [DOI] [PubMed] [Google Scholar]