Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Aug;9(8):1589–1593. doi: 10.1110/ps.9.8.1589

A simple method for the determination of individual rate constants for substrate hydrolysis by serine proteases.

Y M Ayala 1, E Di Cera 1
PMCID: PMC2144722  PMID: 10975580

Abstract

A simple method is presented for the determination of individual rate constants for substrate hydrolysis by serine proteases and other enzymes with similar catalytic mechanism. The method does not require solvent perturbation like viscosity changes, or solvent isotope effects, that often compromise nonspecifically the activity of substrate and enzyme. The rates of substrate diffusion into the active site (k1), substrate dissociation (k-1), acylation (k2), and deacylation (k3) in the accepted mechanism of substrate hydrolysis by serine proteases are derived from the temperature dependence of the Michaelis-Menten parameters kcat/Km and kcat. The method also yields the activation energies for these molecular events. Application to wild-type and mutant thrombins reveals how the various steps of the catalytic mechanism are affected by Na+-binding and site-directed mutations of the important residues Y225 in the Na+ binding environment and L99 in the S2 specificity site. Extension of this method to other proteases should enable the derivation of detailed information on the kinetic and energetic determinants of protease function.

Full Text

The Full Text of this article is available as a PDF (129.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brouwer A. C., Kirsch J. F. Investigation of diffusion-limited rates of chymotrypsin reactions by viscosity variation. Biochemistry. 1982 Mar 16;21(6):1302–1307. doi: 10.1021/bi00535a030. [DOI] [PubMed] [Google Scholar]
  2. Cleland W. W. Determining the chemical mechanisms of enzyme-catalyzed reactions by kinetic studies. Adv Enzymol Relat Areas Mol Biol. 1977;45:273–387. doi: 10.1002/9780470122907.ch4. [DOI] [PubMed] [Google Scholar]
  3. Cleland W. W. Isotope effects: determination of enzyme transition state structure. Methods Enzymol. 1995;249:341–373. doi: 10.1016/0076-6879(95)49041-8. [DOI] [PubMed] [Google Scholar]
  4. Dang Q. D., Di Cera E. Residue 225 determines the Na(+)-induced allosteric regulation of catalytic activity in serine proteases. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10653–10656. doi: 10.1073/pnas.93.20.10653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dang Q. D., Guinto E. R., di Cera E. Rational engineering of activity and specificity in a serine protease. Nat Biotechnol. 1997 Feb;15(2):146–149. doi: 10.1038/nbt0297-146. [DOI] [PubMed] [Google Scholar]
  6. Di Cera E., Hopfner K. P., Dang Q. D. Theory of allosteric effects in serine proteases. Biophys J. 1996 Jan;70(1):174–181. doi: 10.1016/S0006-3495(96)79558-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Guinto E. R., Caccia S., Rose T., Fütterer K., Waksman G., Di Cera E. Unexpected crucial role of residue 225 in serine proteases. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):1852–1857. doi: 10.1073/pnas.96.5.1852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Guinto E. R., Di Cera E. Large heat capacity change in a protein-monovalent cation interaction. Biochemistry. 1996 Jul 9;35(27):8800–8804. doi: 10.1021/bi9608828. [DOI] [PubMed] [Google Scholar]
  9. Hopfner K. P., Lang A., Karcher A., Sichler K., Kopetzki E., Brandstetter H., Huber R., Bode W., Engh R. A. Coagulation factor IXa: the relaxed conformation of Tyr99 blocks substrate binding. Structure. 1999 Aug 15;7(8):989–996. doi: 10.1016/s0969-2126(99)80125-7. [DOI] [PubMed] [Google Scholar]
  10. Laidler K. J., Peterman B. F. Temperature effects in enzyme kinetics. Methods Enzymol. 1979;63:234–257. doi: 10.1016/0076-6879(79)63012-4. [DOI] [PubMed] [Google Scholar]
  11. Lamba D., Bauer M., Huber R., Fischer S., Rudolph R., Kohnert U., Bode W. The 2.3 A crystal structure of the catalytic domain of recombinant two-chain human tissue-type plasminogen activator. J Mol Biol. 1996 Apr 26;258(1):117–135. doi: 10.1006/jmbi.1996.0238. [DOI] [PubMed] [Google Scholar]
  12. Lesk A. M., Fordham W. D. Conservation and variability in the structures of serine proteinases of the chymotrypsin family. J Mol Biol. 1996 May 10;258(3):501–537. doi: 10.1006/jmbi.1996.0264. [DOI] [PubMed] [Google Scholar]
  13. Rezaie A. R. Reactivities of the S2 and S3 subsite residues of thrombin with the native and heparin-induced conformers of antithrombin. Protein Sci. 1998 Feb;7(2):349–357. doi: 10.1002/pro.5560070215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rezaie A. R. Role of Leu99 of thrombin in determining the P2 specificity of serpins. Biochemistry. 1997 Jun 17;36(24):7437–7446. doi: 10.1021/bi962965u. [DOI] [PubMed] [Google Scholar]
  15. Stoll V. S., Blanchard J. S. Buffers: principles and practice. Methods Enzymol. 1990;182:24–38. doi: 10.1016/0076-6879(90)82006-n. [DOI] [PubMed] [Google Scholar]
  16. Stone S. R., Betz A., Hofsteenge J. Mechanistic studies on thrombin catalysis. Biochemistry. 1991 Oct 15;30(41):9841–9848. doi: 10.1021/bi00105a005. [DOI] [PubMed] [Google Scholar]
  17. Warshel A., Naray-Szabo G., Sussman F., Hwang J. K. How do serine proteases really work? Biochemistry. 1989 May 2;28(9):3629–3637. doi: 10.1021/bi00435a001. [DOI] [PubMed] [Google Scholar]
  18. Wells C. M., Di Cera E. Thrombin is a Na(+)-activated enzyme. Biochemistry. 1992 Dec 1;31(47):11721–11730. doi: 10.1021/bi00162a008. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES