Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Aug;9(8):1455–1465. doi: 10.1110/ps.9.8.1455

Five recombinant fragments of human serum albumin-tools for the characterization of the warfarin binding site.

M Dockal 1, M Chang 1, D C Carter 1, F Rüker 1
PMCID: PMC2144726  PMID: 10975567

Abstract

Human serum albumin (HSA) interacts with a vast array of chemically diverse ligands at specific binding sites. To pinpoint the essential structural elements for the formation of the warfarin binding site on human serum albumin, a defined set of five recombinant proteins comprising combinations of domains and/or subdomains of the N-terminal part were prepared and characterized by biochemical standard procedures, tryptophanyl fluorescence, and circular dichroic measurements, indicating well-preserved secondary and tertiary structures. Affinity constants for binding to warfarin were estimated by fluorescence titration experiments and found to be highest for HSA-DOM I-II and HSA, followed by HSA-DOM IB-II, HSA-DOM II, and HSA-DOM I-IIA. In addition, ultraviolet difference spectroscopy and induced circular dichroism experiments were carried out to get an in depth understanding of the binding mechanism of warfarin to the fragments as stand-alone proteins. This systematic study indicates that the primary warfarin binding site is centered in subdomain IIA with indispensable structural contributions of subdomain IIB and domain I, while domain III is not involved in this binding site, underlining the great potential that lies in the use of combinations of recombinant fragments for the study and accurate localization of ligand binding sites on HSA.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bos O. J., Fischer M. J., Wilting J., Janssen L. H. Mechanism by which warfarin binds to human serum albumin. Stopped-flow kinetic experiments with two large fragments of albumin. Biochem Pharmacol. 1989 Jun 15;38(12):1979–1984. doi: 10.1016/0006-2952(89)90497-8. [DOI] [PubMed] [Google Scholar]
  2. Bos O. J., Remijn J. P., Fischer M. J., Wilting J., Janssen L. H. Location and characterization of the warfarin binding site of human serum albumin. A comparative study of two large fragments. Biochem Pharmacol. 1988 Oct 15;37(20):3905–3909. doi: 10.1016/0006-2952(88)90072-x. [DOI] [PubMed] [Google Scholar]
  3. Brown N. A., Müller W. E. Binding of coumarin anticoagulants to human and bovine serum albumin. Circular dichroism studies. Pharmacology. 1978;17(4):233–238. doi: 10.1159/000136860. [DOI] [PubMed] [Google Scholar]
  4. Carter D. C., Ho J. X. Structure of serum albumin. Adv Protein Chem. 1994;45:153–203. doi: 10.1016/s0065-3233(08)60640-3. [DOI] [PubMed] [Google Scholar]
  5. Connolly M. L. Solvent-accessible surfaces of proteins and nucleic acids. Science. 1983 Aug 19;221(4612):709–713. doi: 10.1126/science.6879170. [DOI] [PubMed] [Google Scholar]
  6. Cowgill R. W. Fluorescence and protein structure. XV. Tryptophan fluorescence in helical muscle protein. Biochim Biophys Acta. 1968 Dec 3;168(3):431–438. doi: 10.1016/0005-2795(68)90176-1. [DOI] [PubMed] [Google Scholar]
  7. Curry S., Mandelkow H., Brick P., Franks N. Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat Struct Biol. 1998 Sep;5(9):827–835. doi: 10.1038/1869. [DOI] [PubMed] [Google Scholar]
  8. Dockal M., Carter D. C., Rüker F. Conformational transitions of the three recombinant domains of human serum albumin depending on pH. J Biol Chem. 2000 Feb 4;275(5):3042–3050. doi: 10.1074/jbc.275.5.3042. [DOI] [PubMed] [Google Scholar]
  9. Dockal M., Carter D. C., Rüker F. The three recombinant domains of human serum albumin. Structural characterization and ligand binding properties. J Biol Chem. 1999 Oct 8;274(41):29303–29310. doi: 10.1074/jbc.274.41.29303. [DOI] [PubMed] [Google Scholar]
  10. Dougherty D. A. Cation-pi interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science. 1996 Jan 12;271(5246):163–168. doi: 10.1126/science.271.5246.163. [DOI] [PubMed] [Google Scholar]
  11. Dröge J. H., Janssen L. H., Wilting J. A comparative study of some physico-chemical properties of human serum albumin samples from different sources--I. Some physico-chemical properties of isoionic human serum albumin solutions. Biochem Pharmacol. 1982 Dec 1;31(23):3775–3779. doi: 10.1016/0006-2952(82)90292-1. [DOI] [PubMed] [Google Scholar]
  12. Eftink M. R., Ghiron C. A. Exposure of tryptophanyl residues and protein dynamics. Biochemistry. 1977 Dec 13;16(25):5546–5551. doi: 10.1021/bi00644a024. [DOI] [PubMed] [Google Scholar]
  13. Eftink M. R., Ghiron C. A. Exposure of tryptophanyl residues in proteins. Quantitative determination by fluorescence quenching studies. Biochemistry. 1976 Feb 10;15(3):672–680. doi: 10.1021/bi00648a035. [DOI] [PubMed] [Google Scholar]
  14. Epps D. E., Raub T. J., Kézdy F. J. A general, wide-rage spectrofluorometric method for measuring the site-specific affinities of drugs toward human serum albumin. Anal Biochem. 1995 May 20;227(2):342–350. doi: 10.1006/abio.1995.1290. [DOI] [PubMed] [Google Scholar]
  15. Fehske K. J., Müller W. E., Wollert U. The location of drug binding sites in human serum albumin. Biochem Pharmacol. 1981 Apr 1;30(7):687–692. doi: 10.1016/0006-2952(81)90151-9. [DOI] [PubMed] [Google Scholar]
  16. Fehske K. J., Müller W. E., Wollert U., Velden L. M. The lone tryptophan residue of human serum albumin as part of the specific warfarin binding site. Binding of dicoumarol to the warfarin, indole and benzodiazepine binding sites. Mol Pharmacol. 1979 Nov;16(3):778–789. [PubMed] [Google Scholar]
  17. Fehske K. J., Schläfer U., Wollert U., Müller W. E. Characterization of an important drug binding area on human serum albumin including the high-affinity binding sites of warfarin and azapropazone. Mol Pharmacol. 1982 Mar;21(2):387–393. [PubMed] [Google Scholar]
  18. Gill S. C., von Hippel P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. doi: 10.1016/0003-2697(89)90602-7. [DOI] [PubMed] [Google Scholar]
  19. Glatz J. F., Veerkamp J. H. Removal of fatty acids from serum albumin by Lipidex 1000 chromatography. J Biochem Biophys Methods. 1983 Aug;8(1):57–61. doi: 10.1016/0165-022x(83)90021-0. [DOI] [PubMed] [Google Scholar]
  20. Halfman C. J., Nishida T. Influence of pH and electrolyte on the fluorescence of bovine serum albumin. Biochim Biophys Acta. 1971 Aug 27;243(2):284–293. doi: 10.1016/0005-2795(71)90085-7. [DOI] [PubMed] [Google Scholar]
  21. Halfman C. J., Nishida T. Nature of the alteration of the fluorescence spectrum of bovine serum albumin produced by the binding of dodecyl sulfate. Biochim Biophys Acta. 1971 Aug 27;243(2):294–303. doi: 10.1016/0005-2795(71)90086-9. [DOI] [PubMed] [Google Scholar]
  22. He X. M., Carter D. C. Atomic structure and chemistry of human serum albumin. Nature. 1992 Jul 16;358(6383):209–215. doi: 10.1038/358209a0. [DOI] [PubMed] [Google Scholar]
  23. Honoré B., Pedersen A. O. Conformational changes in human serum albumin studied by fluorescence and absorption spectroscopy. Distance measurements as a function of pH and fatty acids. Biochem J. 1989 Feb 15;258(1):199–204. doi: 10.1042/bj2580199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kosa T., Maruyama T., Otagiri M. Species differences of serum albumins: I. Drug binding sites. Pharm Res. 1997 Nov;14(11):1607–1612. doi: 10.1023/a:1012138604016. [DOI] [PubMed] [Google Scholar]
  25. Kragh-Hansen U. Evidence for a large and flexible region of human serum albumin possessing high affinity binding sites for salicylate, warfarin, and other ligands. Mol Pharmacol. 1988 Aug;34(2):160–171. [PubMed] [Google Scholar]
  26. Kragh-Hansen U. Molecular aspects of ligand binding to serum albumin. Pharmacol Rev. 1981 Mar;33(1):17–53. [PubMed] [Google Scholar]
  27. Kragh-Hansen U. Relations between high-affinity binding sites of markers for binding regions on human serum albumin. Biochem J. 1985 Feb 1;225(3):629–638. doi: 10.1042/bj2250629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kragh-Hansen U. Structure and ligand binding properties of human serum albumin. Dan Med Bull. 1990 Feb;37(1):57–84. [PubMed] [Google Scholar]
  29. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  30. Larsen F. G., Larsen C. G., Jakobsen P., Brodersen R. Interaction of warfarin with human serum albumin. A stoichiometric description. Mol Pharmacol. 1985 Feb;27(2):263–270. [PubMed] [Google Scholar]
  31. Lee J. Y., Hirose M. Partially folded state of the disulfide-reduced form of human serum albumin as an intermediate for reversible denaturation. J Biol Chem. 1992 Jul 25;267(21):14753–14758. [PubMed] [Google Scholar]
  32. Loun B., Hage D. S. Chiral separation mechanisms in protein-based HPLC columns. 2. Kinetic studies of (R)- and (S)-warfarin binding to immobilized human serum albumin. Anal Chem. 1996 Apr 1;68(7):1218–1225. doi: 10.1021/ac950827p. [DOI] [PubMed] [Google Scholar]
  33. Maes V., Engelborghs Y., Hoebeke J., Maras Y., Vercruysse A. Fluorimetric analysis of the binding of warfarin to human serum albumin. Equilibrium and kinetic study. Mol Pharmacol. 1982 Jan;21(1):100–107. [PubMed] [Google Scholar]
  34. Mecozzi S., West A. P., Jr, Dougherty D. A. Cation-pi interactions in aromatics of biological and medicinal interest: electrostatic potential surfaces as a useful qualitative guide. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10566–10571. doi: 10.1073/pnas.93.20.10566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Otagiri M., Maruyama T., Imai T., Suenaga A., Imamura Y. A comparative study of the interaction of warfarin with human alpha 1-acid glycoprotein and human albumin. J Pharm Pharmacol. 1987 Jun;39(6):416–420. doi: 10.1111/j.2042-7158.1987.tb03412.x. [DOI] [PubMed] [Google Scholar]
  36. Panjehshahin M. R., Yates M. S., Bowmer C. J. A comparison of drug binding sites on mammalian albumins. Biochem Pharmacol. 1992 Sep 1;44(5):873–879. doi: 10.1016/0006-2952(92)90118-3. [DOI] [PubMed] [Google Scholar]
  37. Petersen C. E., Ha C. E., Harohalli K., Park D. S., Bhagavan N. V. Familial dysalbuminemic byperthyroxinemia may result in altered warfarin pharmacokinetics. Chem Biol Interact. 2000 Feb 1;124(3):161–172. doi: 10.1016/s0009-2797(99)00143-x. [DOI] [PubMed] [Google Scholar]
  38. Provencher S. W., Glöckner J. Estimation of globular protein secondary structure from circular dichroism. Biochemistry. 1981 Jan 6;20(1):33–37. doi: 10.1021/bi00504a006. [DOI] [PubMed] [Google Scholar]
  39. Rajkowski K. M. Comparison of graphical procedures for estimating the intrinsic molar fluorescence of protein-bound drugs for drug-binding studies. A reevaluation of existing plots and introduction of two inverse hyperbolic plots. Biochem Pharmacol. 1990 Mar 1;39(5):895–900. doi: 10.1016/0006-2952(90)90205-y. [DOI] [PubMed] [Google Scholar]
  40. Steinhardt J., Krijn J., Leidy J. G. Differences between bovine and human serum albumins: binding isotherms, optical rotatory dispersion, viscosity, hydrogen ion titration, and fluorescence effects. Biochemistry. 1971 Oct 26;10(22):4005–4015. doi: 10.1021/bi00798a001. [DOI] [PubMed] [Google Scholar]
  41. Sudlow G., Birkett D. J., Wade D. N. Further characterization of specific drug binding sites on human serum albumin. Mol Pharmacol. 1976 Nov;12(6):1052–1061. [PubMed] [Google Scholar]
  42. Sudlow G., Birkett D. J., Wade D. N. Spectroscopic techniques in the study of protein binding. A fluorescence technique for the evaluation of the albumin binding and displacement of warfarin and warfarin-alcohol. Clin Exp Pharmacol Physiol. 1975 Mar-Apr;2(2):129–140. doi: 10.1111/j.1440-1681.1975.tb01826.x. [DOI] [PubMed] [Google Scholar]
  43. Sudlow G., Birkett D. J., Wade D. N. The characterization of two specific drug binding sites on human serum albumin. Mol Pharmacol. 1975 Nov;11(6):824–832. [PubMed] [Google Scholar]
  44. Sugio S., Kashima A., Mochizuki S., Noda M., Kobayashi K. Crystal structure of human serum albumin at 2.5 A resolution. Protein Eng. 1999 Jun;12(6):439–446. doi: 10.1093/protein/12.6.439. [DOI] [PubMed] [Google Scholar]
  45. Uversky V. N., Narizhneva N. V., Ivanova T. V., Tomashevski A. Y. Rigidity of human alpha-fetoprotein tertiary structure is under ligand control. Biochemistry. 1997 Nov 4;36(44):13638–13645. doi: 10.1021/bi970332p. [DOI] [PubMed] [Google Scholar]
  46. Vorum H. Reversible ligand binding to human serum albumin. Theoretical and clinical aspects. Dan Med Bull. 1999 Nov;46(5):379–399. [PubMed] [Google Scholar]
  47. Wetzel R., Becker M., Behlke J., Billwitz H., Böhm S., Ebert B., Hamann H., Krumbiegel J., Lassmann G. Temperature behaviour of human serum albumin. Eur J Biochem. 1980 Mar;104(2):469–478. doi: 10.1111/j.1432-1033.1980.tb04449.x. [DOI] [PubMed] [Google Scholar]
  48. Wilding G., Feldhoff R. C., Vesell E. S. Concentration-dependent effects of fatty acids on warfarin binding to albumin. Biochem Pharmacol. 1977 Jun 15;26(12):1143–1146. doi: 10.1016/0006-2952(77)90058-2. [DOI] [PubMed] [Google Scholar]
  49. Yamasaki K., Maruyama T., Kragh-Hansen U., Otagiri M. Characterization of site I on human serum albumin: concept about the structure of a drug binding site. Biochim Biophys Acta. 1996 Jul 18;1295(2):147–157. doi: 10.1016/0167-4838(96)00013-1. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES