Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Aug;9(8):1439–1454. doi: 10.1110/ps.9.8.1439

Blue copper proteins: a comparative analysis of their molecular interaction properties.

F De Rienzo 1, R R Gabdoulline 1, M C Menziani 1, R C Wade 1
PMCID: PMC2144732  PMID: 10975566

Abstract

Blue copper proteins are type-I copper-containing redox proteins whose role is to shuttle electrons from an electron donor to an electron acceptor in bacteria and plants. A large amount of experimental data is available on blue copper proteins; however, their functional characterization is hindered by the complexity of redox processes in biological systems. We describe here the application of a semiquantitative method based on a comparative analysis of molecular interaction fields to gain insights into the recognition properties of blue copper proteins. Molecular electrostatic and hydrophobic potentials were computed and compared for a set of 33 experimentally-determined structures of proteins from seven blue copper subfamilies, and the results were quantified by means of similarity indices. The analysis provides a classification of the blue copper proteins and shows that (I) comparison of the molecular electrostatic potentials provides useful information complementary to that highlighted by sequence analysis; (2) similarities in recognition properties can be detected for proteins belonging to different subfamilies, such as amicyanins and pseudoazurins, that may be isofunctional proteins; (3) dissimilarities in interaction properties, consistent with experimentally different binding specificities, may be observed between proteins belonging to the same subfamily, such as cyanobacterial and eukaryotic plastocyanins; (4) proteins with low sequence identity, such as azurins and pseudoazurins, can have sufficient similarity to bind to similar electron donors and acceptors while having different binding specificity profiles.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adman E. T. Copper protein structures. Adv Protein Chem. 1991;42:145–197. doi: 10.1016/s0065-3233(08)60536-7. [DOI] [PubMed] [Google Scholar]
  2. Babu C. R., Volkman B. F., Bullerjahn G. S. NMR solution structure of plastocyanin from the photosynthetic prokaryote, Prochlorothrix hollandica. Biochemistry. 1999 Apr 20;38(16):4988–4995. doi: 10.1021/bi983024f. [DOI] [PubMed] [Google Scholar]
  3. Badsberg U., Jørgensen A. M., Gesmar H., Led J. J., Hammerstad J. M., Jespersen L. L., Ulstrup J. Solution structure of reduced plastocyanin from the blue-green alga Anabaena variabilis. Biochemistry. 1996 Jun 4;35(22):7021–7031. doi: 10.1021/bi960621y. [DOI] [PubMed] [Google Scholar]
  4. Bagby S., Driscoll P. C., Harvey T. S., Hill H. A. High-resolution solution structure of reduced parsley plastocyanin. Biochemistry. 1994 May 31;33(21):6611–6622. doi: 10.1021/bi00187a031. [DOI] [PubMed] [Google Scholar]
  5. Baker E. N. Structure of azurin from Alcaligenes denitrificans refinement at 1.8 A resolution and comparison of the two crystallographically independent molecules. J Mol Biol. 1988 Oct 20;203(4):1071–1095. doi: 10.1016/0022-2836(88)90129-5. [DOI] [PubMed] [Google Scholar]
  6. Blomberg N., Gabdoulline R. R., Nilges M., Wade R. C. Classification of protein sequences by homology modeling and quantitative analysis of electrostatic similarity. Proteins. 1999 Nov 15;37(3):379–387. doi: 10.1002/(sici)1097-0134(19991115)37:3<379::aid-prot6>3.0.co;2-k. [DOI] [PubMed] [Google Scholar]
  7. Bond C. S., Bendall D. S., Freeman H. C., Guss J. M., Howe C. J., Wagner M. J., Wilce M. C. The structure of plastocyanin from the cyanobacterium Phormidium laminosum. Acta Crystallogr D Biol Crystallogr. 1999 Feb;55(Pt 2):414–421. doi: 10.1107/s0907444998012074. [DOI] [PubMed] [Google Scholar]
  8. Carrell C. J., Schlarb B. G., Bendall D. S., Howe C. J., Cramer W. A., Smith J. L. Structure of the soluble domain of cytochrome f from the cyanobacterium Phormidium laminosum. Biochemistry. 1999 Jul 27;38(30):9590–9599. doi: 10.1021/bi9903190. [DOI] [PubMed] [Google Scholar]
  9. Chen L., Durley R. C., Mathews F. S., Davidson V. L. Structure of an electron transfer complex: methylamine dehydrogenase, amicyanin, and cytochrome c551i. Science. 1994 Apr 1;264(5155):86–90. doi: 10.1126/science.8140419. [DOI] [PubMed] [Google Scholar]
  10. Chen Z. W., Barber M. J., McIntire W. S., Mathews F. S. Crystallographic study of azurin from Pseudomonas putida. Acta Crystallogr D Biol Crystallogr. 1998 Mar 1;54(Pt 2):253–268. doi: 10.1107/s0907444997011505. [DOI] [PubMed] [Google Scholar]
  11. Collyer C. A., Guss J. M., Sugimura Y., Yoshizaki F., Freeman H. C. Crystal structure of plastocyanin from a green alga, Enteromorpha prolifera. J Mol Biol. 1990 Feb 5;211(3):617–632. doi: 10.1016/0022-2836(90)90269-R. [DOI] [PubMed] [Google Scholar]
  12. De Kerpel J. O., Ryde U. Protein strain in blue copper proteins studied by free energy perturbations. Proteins. 1999 Aug 1;36(2):157–174. doi: 10.1002/(sici)1097-0134(19990801)36:2<157::aid-prot3>3.0.co;2-y. [DOI] [PubMed] [Google Scholar]
  13. Demchuk E., Mueller T., Oschkinat H., Sebald W., Wade R. C. Receptor binding properties of four-helix-bundle growth factors deduced from electrostatic analysis. Protein Sci. 1994 Jun;3(6):920–935. doi: 10.1002/pro.5560030607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dodd F. E., Hasnain S. S., Hunter W. N., Abraham Z. H., Debenham M., Kanzler H., Eldridge M., Eady R. R., Ambler R. P., Smith B. E. Evidence for two distinct azurins in Alcaligenes xylosoxidans (NCIMB 11015): potential electron donors to nitrite reductase. Biochemistry. 1995 Aug 15;34(32):10180–10186. doi: 10.1021/bi00032a011. [DOI] [PubMed] [Google Scholar]
  15. Dodd F. E., Van Beeumen J., Eady R. R., Hasnain S. S. X-ray structure of a blue-copper nitrite reductase in two crystal forms. The nature of the copper sites, mode of substrate binding and recognition by redox partner. J Mol Biol. 1998 Sep 18;282(2):369–382. doi: 10.1006/jmbi.1998.2007. [DOI] [PubMed] [Google Scholar]
  16. Durell S. R., Labanowski J. K., Gross E. L. Modeling of the electrostatic potential field of plastocyanin. Arch Biochem Biophys. 1990 Mar;277(2):241–254. doi: 10.1016/0003-9861(90)90575-j. [DOI] [PubMed] [Google Scholar]
  17. Durley R., Chen L., Lim L. W., Mathews F. S., Davidson V. L. Crystal structure analysis of amicyanin and apoamicyanin from Paracoccus denitrificans at 2.0 A and 1.8 A resolution. Protein Sci. 1993 May;2(5):739–752. doi: 10.1002/pro.5560020506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gross E. L., Curtiss A., Durell S. R., White D. Chemical modification of spinach plastocyanin using 4-chloro-3,5-dinitrobenzoic acid: characterization of four singly-modified forms. Biochim Biophys Acta. 1990 Mar 15;1016(1):107–114. doi: 10.1016/0005-2728(90)90012-s. [DOI] [PubMed] [Google Scholar]
  19. Guss J. M., Bartunik H. D., Freeman H. C. Accuracy and precision in protein structure analysis: restrained least-squares refinement of the structure of poplar plastocyanin at 1.33 A resolution. Acta Crystallogr B. 1992 Dec 1;48(Pt 6):790–811. doi: 10.1107/s0108768192004270. [DOI] [PubMed] [Google Scholar]
  20. Guss J. M., Harrowell P. R., Murata M., Norris V. A., Freeman H. C. Crystal structure analyses of reduced (CuI) poplar plastocyanin at six pH values. J Mol Biol. 1986 Nov 20;192(2):361–387. doi: 10.1016/0022-2836(86)90371-2. [DOI] [PubMed] [Google Scholar]
  21. Guss J. M., Merritt E. A., Phizackerley R. P., Freeman H. C. The structure of a phytocyanin, the basic blue protein from cucumber, refined at 1.8 A resolution. J Mol Biol. 1996 Oct 11;262(5):686–705. doi: 10.1006/jmbi.1996.0545. [DOI] [PubMed] [Google Scholar]
  22. Hart P. J., Nersissian A. M., Herrmann R. G., Nalbandyan R. M., Valentine J. S., Eisenberg D. A missing link in cupredoxins: crystal structure of cucumber stellacyanin at 1.6 A resolution. Protein Sci. 1996 Nov;5(11):2175–2183. doi: 10.1002/pro.5560051104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Harvey I., Hao Q., Duke E. M., Ingledew W. J., Hasnain S. S. Structure determination of a 16.8 kDa copper protein at 2.1 A resolution using anomalous scattering data with direct methods. Acta Crystallogr D Biol Crystallogr. 1998 Jul 1;54(Pt 4):629–635. doi: 10.1107/s0907444998005423. [DOI] [PubMed] [Google Scholar]
  24. Hibino T., Lee B. H., Yajima T., Odani A., Yamauchi O., Takabe T. Kinetic and cross-linking studies on the interactions of negative patch mutant plastocyanin from Silene pratensis with photosystem I complexes from cyanobacteria, green algae, and plants. J Biochem. 1996 Sep;120(3):556–563. doi: 10.1093/oxfordjournals.jbchem.a021450. [DOI] [PubMed] [Google Scholar]
  25. Inoue T., Kai Y., Harada S., Kasai N., Ohshiro Y., Suzuki S., Kohzuma T., Tobari J. Refined crystal structure of pseudoazurin from Methylobacterium extorquens AM1 at 1.5 A resolution. Acta Crystallogr D Biol Crystallogr. 1994 May 1;50(Pt 3):317–328. doi: 10.1107/S0907444994000260. [DOI] [PubMed] [Google Scholar]
  26. Inoue T., Nishio N., Kai Y., Harada S., Ohshiro Y., Suzuki S., Kohzuma T., Shidara S., Iwasaki H. Crystallization and preliminary X-ray studies on pseudoazurin from Achromobacter cycloclastes IAM1013. J Biochem. 1993 Dec;114(6):761–762. doi: 10.1093/oxfordjournals.jbchem.a124251. [DOI] [PubMed] [Google Scholar]
  27. Inoue T., Sugawara H., Hamanaka S., Tsukui H., Suzuki E., Kohzuma T., Kai Y. Crystal structure determinations of oxidized and reduced plastocyanin from the cyanobacterium Synechococcus sp. PCC 7942. Biochemistry. 1999 May 11;38(19):6063–6069. doi: 10.1021/bi9824442. [DOI] [PubMed] [Google Scholar]
  28. Kalverda A. P., Wymenga S. S., Lommen A., van de Ven F. J., Hilbers C. W., Canters G. W. Solution structure of the type 1 blue copper protein amicyanin from Thiobacillus versutus. J Mol Biol. 1994 Jul 22;240(4):358–371. doi: 10.1006/jmbi.1994.1450. [DOI] [PubMed] [Google Scholar]
  29. Kelley L. A., Gardner S. P., Sutcliffe M. J. An automated approach for clustering an ensemble of NMR-derived protein structures into conformationally related subfamilies. Protein Eng. 1996 Nov;9(11):1063–1065. doi: 10.1093/protein/9.11.1063. [DOI] [PubMed] [Google Scholar]
  30. Kohzuma T., Inoue T., Yoshizaki F., Sasakawa Y., Onodera K., Nagatomo S., Kitagawa T., Uzawa S., Isobe Y., Sugimura Y. The structure and unusual pH dependence of plastocyanin from the fern Dryopteris crassirhizoma. The protonation of an active site histidine is hindered by pi-pi interactions. J Biol Chem. 1999 Apr 23;274(17):11817–11823. doi: 10.1074/jbc.274.17.11817. [DOI] [PubMed] [Google Scholar]
  31. Kukimoto M., Nishiyama M., Ohnuki T., Turley S., Adman E. T., Horinouchi S., Beppu T. Identification of interaction site of pseudoazurin with its redox partner, copper-containing nitrite reductase from Alcaligenes faecalis S-6. Protein Eng. 1995 Feb;8(2):153–158. doi: 10.1093/protein/8.2.153. [DOI] [PubMed] [Google Scholar]
  32. Kukimoto M., Nishiyama M., Tanokura M., Adman E. T., Horinouchi S. Studies on protein-protein interaction between copper-containing nitrite reductase and pseudoazurin from Alcaligenes faecalis S-6. J Biol Chem. 1996 Jun 7;271(23):13680–13683. doi: 10.1074/jbc.271.23.13680. [DOI] [PubMed] [Google Scholar]
  33. Lee B. H., Hibino T., Takabe T., Weisbeek P. J., Takabe T. Site-directed mutagenetic study on the role of negative patches on silene plastocyanin in the interactions with cytochrome f and photosystem I. J Biochem. 1995 Jun;117(6):1209–1217. doi: 10.1093/oxfordjournals.jbchem.a124846. [DOI] [PubMed] [Google Scholar]
  34. Leung Y. C., Chan C., Reader J. S., Willis A. C., van Spanning R. J., Ferguson S. J., Radford S. E. The pseudoazurin gene from Thiosphaera pantotropha: analysis of upstream putative regulatory sequences and overexpression in Escherichia coli. Biochem J. 1997 Feb 1;321(Pt 3):699–705. doi: 10.1042/bj3210699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Li C., Inoue T., Gotowda M., Suzuki S., Yamaguchi K., Kunishige K., Kai Y. Structure of azurin I from the denitrifying bacterium Alcaligenes xylosoxidans NCIMB 11015 at 2.45 A resolution. Acta Crystallogr D Biol Crystallogr. 1998 May 1;54(Pt 3):347–354. doi: 10.1107/s0907444997010974. [DOI] [PubMed] [Google Scholar]
  36. Libeu C. A., Kukimoto M., Nishiyama M., Horinouchi S., Adman E. T. Site-directed mutants of pseudoazurin: explanation of increased redox potentials from X-ray structures and from calculation of redox potential differences. Biochemistry. 1997 Oct 28;36(43):13160–13179. doi: 10.1021/bi9704111. [DOI] [PubMed] [Google Scholar]
  37. Manna P., Vermaas W. Lumenal proteins involved in respiratory electron transport in the cyanobacterium Synechocystis sp. PCC6803. Plant Mol Biol. 1997 Nov;35(4):407–416. doi: 10.1023/a:1005875124387. [DOI] [PubMed] [Google Scholar]
  38. Moir J. W., Baratta D., Richardson D. J., Ferguson S. J. The purification of a cd1-type nitrite reductase from, and the absence of a copper-type nitrite reductase from, the aerobic denitrifier Thiosphaera pantotropha; the role of pseudoazurin as an electron donor. Eur J Biochem. 1993 Mar 1;212(2):377–385. doi: 10.1111/j.1432-1033.1993.tb17672.x. [DOI] [PubMed] [Google Scholar]
  39. Moore J. M., Lepre C. A., Gippert G. P., Chazin W. J., Case D. A., Wright P. E. High-resolution solution structure of reduced French bean plastocyanin and comparison with the crystal structure of poplar plastocyanin. J Mol Biol. 1991 Sep 20;221(2):533–555. doi: 10.1016/0022-2836(91)80071-2. [DOI] [PubMed] [Google Scholar]
  40. Nar H., Messerschmidt A., Huber R., van de Kamp M., Canters G. W. Crystal structure analysis of oxidized Pseudomonas aeruginosa azurin at pH 5.5 and pH 9.0. A pH-induced conformational transition involves a peptide bond flip. J Mol Biol. 1991 Oct 5;221(3):765–772. doi: 10.1016/0022-2836(91)80173-r. [DOI] [PubMed] [Google Scholar]
  41. Nersissian A. M., Immoos C., Hill M. G., Hart P. J., Williams G., Herrmann R. G., Valentine J. S. Uclacyanins, stellacyanins, and plantacyanins are distinct subfamilies of phytocyanins: plant-specific mononuclear blue copper proteins. Protein Sci. 1998 Sep;7(9):1915–1929. doi: 10.1002/pro.5560070907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Pearson D. C., Jr, Gross E. L., David E. S. Electrostatic properties of cytochrome f: implications for docking with plastocyanin. Biophys J. 1996 Jul;71(1):64–76. doi: 10.1016/S0006-3495(96)79236-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Qin L., Kostić N. M. Importance of protein rearrangement in the electron-transfer reaction between the physiological partners cytochrome f and plastocyanin. Biochemistry. 1993 Jun 15;32(23):6073–6080. doi: 10.1021/bi00074a019. [DOI] [PubMed] [Google Scholar]
  44. Redinbo M. R., Cascio D., Choukair M. K., Rice D., Merchant S., Yeates T. O. The 1.5-A crystal structure of plastocyanin from the green alga Chlamydomonas reinhardtii. Biochemistry. 1993 Oct 12;32(40):10560–10567. doi: 10.1021/bi00091a005. [DOI] [PubMed] [Google Scholar]
  45. Redinbo M. R., Yeates T. O., Merchant S. Plastocyanin: structural and functional analysis. J Bioenerg Biomembr. 1994 Feb;26(1):49–66. doi: 10.1007/BF00763219. [DOI] [PubMed] [Google Scholar]
  46. Richardson D. C., Richardson J. S. The kinemage: a tool for scientific communication. Protein Sci. 1992 Jan;1(1):3–9. doi: 10.1002/pro.5560010102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Roberts V. A., Freeman H. C., Olson A. J., Tainer J. A., Getzoff E. D. Electrostatic orientation of the electron-transfer complex between plastocyanin and cytochrome c. J Biol Chem. 1991 Jul 15;266(20):13431–13441. [PubMed] [Google Scholar]
  48. Romero A., De la Cerda B., Varela P. F., Navarro J. A., Hervás M., De la Rosa M. A. The 2.15 A crystal structure of a triple mutant plastocyanin from the cyanobacterium Synechocystis sp. PCC 6803. J Mol Biol. 1998 Jan 16;275(2):327–336. doi: 10.1006/jmbi.1997.1455. [DOI] [PubMed] [Google Scholar]
  49. Sali A., Blundell T. L. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993 Dec 5;234(3):779–815. doi: 10.1006/jmbi.1993.1626. [DOI] [PubMed] [Google Scholar]
  50. Shibata N., Inoue T., Nagano C., Nishio N., Kohzuma T., Onodera K., Yoshizaki F., Sugimura Y., Kai Y. Novel insight into the copper-ligand geometry in the crystal structure of Ulva pertusa plastocyanin at 1.6-A resolution. Structural basis for regulation of the copper site by residue 88. J Biol Chem. 1999 Feb 12;274(7):4225–4230. doi: 10.1074/jbc.274.7.4225. [DOI] [PubMed] [Google Scholar]
  51. Sigfridsson K., Young S., Hansson O. Electron transfer between spinach plastocyanin mutants and photosystem 1. Eur J Biochem. 1997 May 1;245(3):805–812. doi: 10.1111/j.1432-1033.1997.00805.x. [DOI] [PubMed] [Google Scholar]
  52. Soriano G. M., Ponamarev M. V., Piskorowski R. A., Cramer W. A. Identification of the basic residues of cytochrome f responsible for electrostatic docking interactions with plastocyanin in vitro: relevance to the electron transfer reaction in vivo. Biochemistry. 1998 Oct 27;37(43):15120–15128. doi: 10.1021/bi9807714. [DOI] [PubMed] [Google Scholar]
  53. Sugawara H., Inoue T., Li C., Gotowda M., Hibino T., Takabe T., Kai Y. Crystal structures of wild-type and mutant plastocyanins from a higher plant, Silene. J Biochem. 1999 May;125(5):899–903. doi: 10.1093/oxfordjournals.jbchem.a022366. [DOI] [PubMed] [Google Scholar]
  54. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Tomić S., Gabdoulline R. R., Kojić-Prodić B., Wade R. C. Classification of auxin plant hormones by interaction property similarity indices. J Comput Aided Mol Des. 1998 Jan;12(1):63–79. doi: 10.1023/a:1007973008558. [DOI] [PubMed] [Google Scholar]
  56. Ubbink M., Ejdebäck M., Karlsson B. G., Bendall D. S. The structure of the complex of plastocyanin and cytochrome f, determined by paramagnetic NMR and restrained rigid-body molecular dynamics. Structure. 1998 Mar 15;6(3):323–335. doi: 10.1016/s0969-2126(98)00035-5. [DOI] [PubMed] [Google Scholar]
  57. Ubbink M., Hunt N. I., Hill H. A., Canters G. W. Kinetics of the reduction of wild-type and mutant cytochrome c-550 by methylamine dehydrogenase and amicyanin from Thiobacillus versutus. Eur J Biochem. 1994 Jun 1;222(2):561–571. doi: 10.1111/j.1432-1033.1994.tb18898.x. [DOI] [PubMed] [Google Scholar]
  58. Ullmann G. M., Hauswald M., Jensen A., Kostić N. M., Knapp E. W. Comparison of the physiologically equivalent proteins cytochrome c6 and plastocyanin on the basis of their electrostatic potentials. Tryptophan 63 in cytochrome c6 may be isofunctional with tyrosine 83 in plastocyanin. Biochemistry. 1997 Dec 23;36(51):16187–16196. doi: 10.1021/bi971241v. [DOI] [PubMed] [Google Scholar]
  59. Van Beeumen J., Van Bun S., Canters G. W., Lommen A., Chothia C. The structural homology of amicyanin from Thiobacillus versutus to plant plastocyanins. J Biol Chem. 1991 Mar 15;266(8):4869–4877. [PubMed] [Google Scholar]
  60. Van Pouderoyen G., Mazumdar S., Hunt N. I., Hill A. O., Canters G. W. The introduction of a negative charge into the hydrophobic patch of Pseudomonas aeruginosa azurin affects the electron self-exchange rate and the electrochemistry. Eur J Biochem. 1994 Jun 1;222(2):583–588. doi: 10.1111/j.1432-1033.1994.tb18900.x. [DOI] [PubMed] [Google Scholar]
  61. Vriend G. WHAT IF: a molecular modeling and drug design program. J Mol Graph. 1990 Mar;8(1):52-6, 29. doi: 10.1016/0263-7855(90)80070-v. [DOI] [PubMed] [Google Scholar]
  62. Wade R. C., Gabdoulline R. R., Lüdemann S. K., Lounnas V. Electrostatic steering and ionic tethering in enzyme-ligand binding: insights from simulations. Proc Natl Acad Sci U S A. 1998 May 26;95(11):5942–5949. doi: 10.1073/pnas.95.11.5942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Walter R. L., Ealick S. E., Friedman A. M., Blake R. C., 2nd, Proctor P., Shoham M. Multiple wavelength anomalous diffraction (MAD) crystal structure of rusticyanin: a highly oxidizing cupredoxin with extreme acid stability. J Mol Biol. 1996 Nov 15;263(5):730–751. doi: 10.1006/jmbi.1996.0612. [DOI] [PubMed] [Google Scholar]
  64. Williams P. A., Fülöp V., Leung Y. C., Chan C., Moir J. W., Howlett G., Ferguson S. J., Radford S. E., Hajdu J. Pseudospecific docking surfaces on electron transfer proteins as illustrated by pseudoazurin, cytochrome c550 and cytochrome cd1 nitrite reductase. Nat Struct Biol. 1995 Nov;2(11):975–982. doi: 10.1038/nsb1195-975. [DOI] [PubMed] [Google Scholar]
  65. Xue Y., Okvist M., Hansson O., Young S. Crystal structure of spinach plastocyanin at 1.7 A resolution. Protein Sci. 1998 Oct;7(10):2099–2105. doi: 10.1002/pro.5560071006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Yamanaka T., Fukumori Y. Molecular aspects of the electron transfer system which participates in the oxidation of ferrous ion by Thiobacillus ferrooxidans. FEMS Microbiol Rev. 1995 Dec;17(4):401–413. doi: 10.1111/j.1574-6976.1995.tb00222.x. [DOI] [PubMed] [Google Scholar]
  67. Young S., Sigfridsson K., Olesen K., Hansson O. The involvement of the two acidic patches of spinach plastocyanin in the reaction with photosystem I. Biochim Biophys Acta. 1997 Dec 15;1322(2-3):106–114. doi: 10.1016/s0005-2728(97)00064-9. [DOI] [PubMed] [Google Scholar]
  68. Zhu D. W., Dahms T., Willis K., Szabo A. G., Lee X. Crystallization and preliminary crystallographic studies of the crystals of the azurin Pseudomonas fluorescens. Arch Biochem Biophys. 1994 Feb 1;308(2):469–470. doi: 10.1006/abbi.1994.1066. [DOI] [PubMed] [Google Scholar]
  69. Zhu Z., Cunane L. M., Chen Z., Durley R. C., Mathews F. S., Davidson V. L. Molecular basis for interprotein complex-dependent effects on the redox properties of amicyanin. Biochemistry. 1998 Dec 8;37(49):17128–17136. doi: 10.1021/bi9817919. [DOI] [PubMed] [Google Scholar]
  70. van de Kamp M., Silvestrini M. C., Brunori M., Van Beeumen J., Hali F. C., Canters G. W. Involvement of the hydrophobic patch of azurin in the electron-transfer reactions with cytochrome C551 and nitrite reductase. Eur J Biochem. 1990 Nov 26;194(1):109–118. doi: 10.1111/j.1432-1033.1990.tb19434.x. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES