Abstract
The effect of xylose on the rates of folding and unfolding of staphylococcal nuclease (nuclease) have been investigated using fluorescence-detected pressure-jump relaxation kinetics in order to establish the kinetic basis for the observed stabilization of nuclease by this sugar (Frye KJ, Perman CS, Royer CA, 1996, Biochemistry 35:10234-10239). The activation volumes for both folding and unfolding and the equilibrium volume change for folding were all positive. Their values were within experimental error of those reported previously (Vidugiris GJA, Markley JL, Royer CA, 1995, Biochemistry 34:4909-4912) and were independent of xylose concentration. The major effect of xylose concentration was to increase significantly the rate of folding. The large positive activation volume for folding was interpreted previously as indicating that the rate-limiting step in nuclease folding involves dehydration of a significant amount of surface area. A large effect of xylose on the rate constant for folding provides strong support for this interpretation, because xylose, an osmolyte, stabilizes the folded state of proteins through surface tension effects. These studies further characterize the transition state in nuclease folding as lying closer to the folded, rather than the unfolded state along the folding coordinate in terms of the degree of burial of surface area. The image of the transition state that emerges is consistent with a dry molten globule.
Full Text
The Full Text of this article is available as a PDF (503.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexandrescu A. T., Hinck A. P., Markley J. L. Coupling between local structure and global stability of a protein: mutants of staphylococcal nuclease. Biochemistry. 1990 May 15;29(19):4516–4525. doi: 10.1021/bi00471a003. [DOI] [PubMed] [Google Scholar]
- Beechem J. M. Global analysis of biochemical and biophysical data. Methods Enzymol. 1992;210:37–54. doi: 10.1016/0076-6879(92)10004-w. [DOI] [PubMed] [Google Scholar]
- Carra J. H., Anderson E. A., Privalov P. L. Three-state thermodynamic analysis of the denaturation of staphylococcal nuclease mutants. Biochemistry. 1994 Sep 6;33(35):10842–10850. doi: 10.1021/bi00201a035. [DOI] [PubMed] [Google Scholar]
- Chen H. M., Markin V. S., Tsong T. Y. Kinetic evidence of microscopic states in protein folding. Biochemistry. 1992 Dec 15;31(49):12369–12375. doi: 10.1021/bi00164a011. [DOI] [PubMed] [Google Scholar]
- Chen H. M., Markin V. S., Tsong T. Y. pH-induced folding/unfolding of staphylococcal nuclease: determination of kinetic parameters by the sequential-jump method. Biochemistry. 1992 Feb 11;31(5):1483–1491. doi: 10.1021/bi00120a027. [DOI] [PubMed] [Google Scholar]
- Dill K. A., Bromberg S., Yue K., Fiebig K. M., Yee D. P., Thomas P. D., Chan H. S. Principles of protein folding--a perspective from simple exact models. Protein Sci. 1995 Apr;4(4):561–602. doi: 10.1002/pro.5560040401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eftink M. R., Ghiron C. A., Kautz R. A., Fox R. O. Fluorescence and conformational stability studies of Staphylococcus nuclease and its mutants, including the less stable nuclease-concanavalin A hybrids. Biochemistry. 1991 Feb 5;30(5):1193–1199. doi: 10.1021/bi00219a005. [DOI] [PubMed] [Google Scholar]
- Eftink M. R. Use of multiple spectroscopic methods to monitor equilibrium unfolding of proteins. Methods Enzymol. 1995;259:487–512. doi: 10.1016/0076-6879(95)59058-7. [DOI] [PubMed] [Google Scholar]
- Evans P. A., Kautz R. A., Fox R. O., Dobson C. M. A magnetization-transfer nuclear magnetic resonance study of the folding of staphylococcal nuclease. Biochemistry. 1989 Jan 10;28(1):362–370. doi: 10.1021/bi00427a050. [DOI] [PubMed] [Google Scholar]
- Finkelstein A. V., Shakhnovich E. I. Theory of cooperative transitions in protein molecules. II. Phase diagram for a protein molecule in solution. Biopolymers. 1989 Oct;28(10):1681–1694. doi: 10.1002/bip.360281004. [DOI] [PubMed] [Google Scholar]
- Fox R. O., Evans P. A., Dobson C. M. Multiple conformations of a protein demonstrated by magnetization transfer NMR spectroscopy. Nature. 1986 Mar 13;320(6058):192–194. doi: 10.1038/320192a0. [DOI] [PubMed] [Google Scholar]
- Frye K. J., Perman C. S., Royer C. A. Testing the correlation between delta A and delta V of protein unfolding using m value mutants of staphylococcal nuclease. Biochemistry. 1996 Aug 6;35(31):10234–10239. doi: 10.1021/bi960693p. [DOI] [PubMed] [Google Scholar]
- Jacobs M. D., Fox R. O. Staphylococcal nuclease folding intermediate characterized by hydrogen exchange and NMR spectroscopy. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):449–453. doi: 10.1073/pnas.91.2.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakano T., Antonino L. C., Fox R. O., Fink A. L. Effect of proline mutations on the stability and kinetics of folding of staphylococcal nuclease. Biochemistry. 1993 Mar 16;32(10):2534–2541. doi: 10.1021/bi00061a010. [DOI] [PubMed] [Google Scholar]
- Oliveberg M., Tan Y. J., Fersht A. R. Negative activation enthalpies in the kinetics of protein folding. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8926–8929. doi: 10.1073/pnas.92.19.8926. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peng X., Jonas J., Silva J. L. Molten-globule conformation of Arc repressor monomers determined by high-pressure 1H NMR spectroscopy. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1776–1780. doi: 10.1073/pnas.90.5.1776. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Royer C. A., Beechem J. M. Numerical analysis of binding data: advantages, practical aspects, and implications. Methods Enzymol. 1992;210:481–505. doi: 10.1016/0076-6879(92)10025-9. [DOI] [PubMed] [Google Scholar]
- Royer C. A., Hinck A. P., Loh S. N., Prehoda K. E., Peng X., Jonas J., Markley J. L. Effects of amino acid substitutions on the pressure denaturation of staphylococcal nuclease as monitored by fluorescence and nuclear magnetic resonance spectroscopy. Biochemistry. 1993 May 18;32(19):5222–5232. doi: 10.1021/bi00070a034. [DOI] [PubMed] [Google Scholar]
- Royer C. A., Smith W. R., Beechem J. M. Analysis of binding in macromolecular complexes: a generalized numerical approach. Anal Biochem. 1990 Dec;191(2):287–294. doi: 10.1016/0003-2697(90)90221-t. [DOI] [PubMed] [Google Scholar]
- Samarasinghe S. D., Campbell D. M., Jonas A., Jonas J. High-resolution NMR study of the pressure-induced unfolding of lysozyme. Biochemistry. 1992 Sep 1;31(34):7773–7778. doi: 10.1021/bi00149a005. [DOI] [PubMed] [Google Scholar]
- Schechter A. N., Chen R. F., Anfinsen C. B. Kinetics of folding of staphylococcal nuclease. Science. 1970 Feb 6;167(3919):886–887. doi: 10.1126/science.167.3919.886. [DOI] [PubMed] [Google Scholar]
- Serrano L., Matouschek A., Fersht A. R. The folding of an enzyme. III. Structure of the transition state for unfolding of barnase analysed by a protein engineering procedure. J Mol Biol. 1992 Apr 5;224(3):805–818. doi: 10.1016/0022-2836(92)90563-y. [DOI] [PubMed] [Google Scholar]
- Shortle D., Lin B. Genetic analysis of staphylococcal nuclease: identification of three intragenic "global" suppressors of nuclease-minus mutations. Genetics. 1985 Aug;110(4):539–555. doi: 10.1093/genetics/110.4.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shortle D., Meeker A. K., Freire E. Stability mutants of staphylococcal nuclease: large compensating enthalpy-entropy changes for the reversible denaturation reaction. Biochemistry. 1988 Jun 28;27(13):4761–4768. doi: 10.1021/bi00413a027. [DOI] [PubMed] [Google Scholar]
- Shortle D., Stites W. E., Meeker A. K. Contributions of the large hydrophobic amino acids to the stability of staphylococcal nuclease. Biochemistry. 1990 Sep 4;29(35):8033–8041. doi: 10.1021/bi00487a007. [DOI] [PubMed] [Google Scholar]
- Timasheff S. N. The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Annu Rev Biophys Biomol Struct. 1993;22:67–97. doi: 10.1146/annurev.bb.22.060193.000435. [DOI] [PubMed] [Google Scholar]
- Vidugiris G. J., Markley J. L., Royer C. A. Evidence for a molten globule-like transition state in protein folding from determination of activation volumes. Biochemistry. 1995 Apr 18;34(15):4909–4912. doi: 10.1021/bi00015a001. [DOI] [PubMed] [Google Scholar]
- Vidugiris G. J., Truckses D. M., Markley J. L., Royer C. A. High-pressure denaturation of staphylococcal nuclease proline-to-glycine substitution mutants. Biochemistry. 1996 Mar 26;35(12):3857–3864. doi: 10.1021/bi952012g. [DOI] [PubMed] [Google Scholar]