Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Apr;6(4):816–824. doi: 10.1002/pro.5560060408

Identification of transmembrane tryptic peptides of rhodopsin using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

D R Barnidge 1, E A Dratz 1, J Sunner 1, A J Jesaitis 1
PMCID: PMC2144751  PMID: 9098891

Abstract

The application of mass spectrometry for determining the topography of integral membrane proteins has focused primarily on the mass determination of fragments that do not reside in the lipid bilayer. In this work, we present the accurate mass determination of transmembrane tryptic peptides of bovine rhodopsin using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The ability to determine the accurate mass of hydrophobic transmembrane peptides will facilitate the mapping of ligand binding sites in membrane receptors. It will also augment the determination of membrane spanning regions from integral membrane proteins digested in lipid bilayers. Affinity-purified rhodopsin in detergent and rhodopsin in retinal rod membranes were digested with trypsin. Tryptic peptides were separated using reverse-phase, high-performance liquid chromatography at 55 degrees C with the detergent octyl-beta-glucoside in the mobile phase. Four of the six transmembrane tryptic peptides of rhodopsin were identified, ranging in mass from 3,260 Da to 6,528 Da. The identities of the peptides were confirmed by Edman microsequencing. In addition, heterogeneity in the glycosylation of the N-terminal tryptic peptide of rhodopsin was identified by MALDI MS, without modifying the carbohydrate prior to analysis.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin J. M. Structure and function of receptors coupled to G proteins. Curr Opin Cell Biol. 1994 Apr;6(2):180–190. doi: 10.1016/0955-0674(94)90134-1. [DOI] [PubMed] [Google Scholar]
  2. Baldwin J. M. The probable arrangement of the helices in G protein-coupled receptors. EMBO J. 1993 Apr;12(4):1693–1703. doi: 10.1002/j.1460-2075.1993.tb05814.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bull H. B., Breese K. Surface tension of amino acid solutions: a hydrophobicity scale of the amino acid residues. Arch Biochem Biophys. 1974 Apr 2;161(2):665–670. doi: 10.1016/0003-9861(74)90352-x. [DOI] [PubMed] [Google Scholar]
  4. Burritt J. B., Quinn M. T., Jutila M. A., Bond C. W., Jesaitis A. J. Topological mapping of neutrophil cytochrome b epitopes with phage-display libraries. J Biol Chem. 1995 Jul 14;270(28):16974–16980. doi: 10.1074/jbc.270.28.16974. [DOI] [PubMed] [Google Scholar]
  5. Deisenhofer J., Michel H. The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis. Biosci Rep. 1989 Aug;9(4):383–419. doi: 10.1007/BF01117044. [DOI] [PubMed] [Google Scholar]
  6. Dormán G., Prestwich G. D. Benzophenone photophores in biochemistry. Biochemistry. 1994 May 17;33(19):5661–5673. doi: 10.1021/bi00185a001. [DOI] [PubMed] [Google Scholar]
  7. Hargrave P. A., McDowell J. H., Curtis D. R., Wang J. K., Juszczak E., Fong S. L., Rao J. K., Argos P. The structure of bovine rhodopsin. Biophys Struct Mech. 1983;9(4):235–244. doi: 10.1007/BF00535659. [DOI] [PubMed] [Google Scholar]
  8. Hemling M. E., Carr S. A., Capiau C., Petre J. Structural characterization of recombinant hepatitis B surface antigen protein by mass spectrometry. Biochemistry. 1988 Jan 26;27(2):699–705. doi: 10.1021/bi00402a031. [DOI] [PubMed] [Google Scholar]
  9. Jennings M. L. Topography of membrane proteins. Annu Rev Biochem. 1989;58:999–1027. doi: 10.1146/annurev.bi.58.070189.005031. [DOI] [PubMed] [Google Scholar]
  10. Kean E. L., Hara S., Mizoguchi A., Matsumoto A., Kobata A. The enzymatic cleavage of rhodopsin by the retinal pigment epithelium. II. The carbohydrate composition of the glycopeptide cleavage product. Exp Eye Res. 1983 Jun;36(6):817–825. doi: 10.1016/0014-4835(83)90035-0. [DOI] [PubMed] [Google Scholar]
  11. Liang C. J., Yamashita K., Muellenberg C. G., Shichi H., Kobata A. Structure of the carbohydrate moieties of bovine rhodopsin. J Biol Chem. 1979 Jul 25;254(14):6414–6418. [PubMed] [Google Scholar]
  12. Machold J., Utkin Y., Kirsch D., Kaufmann R., Tsetlin V., Hucho F. Photolabeling reveals the proximity of the alpha-neurotoxin binding site to the M2 helix of the ion channel in the nicotinic acetylcholine receptor. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7282–7286. doi: 10.1073/pnas.92.16.7282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Miljanich G. P., Brown M. F., Mabrey-Gaud S., Dratz E. A., Sturtevant J. M. Thermotropic behavior of retinal rod membranes and dispersions of extracted phospholipids. J Membr Biol. 1985;85(1):79–86. doi: 10.1007/BF01872007. [DOI] [PubMed] [Google Scholar]
  14. Moore C. R., Yates J. R., 3rd, Griffin P. R., Shabanowitz J., Martino P. A., Hunt D. F., Cafiso D. S. Proteolytic fragments of the nicotinic acetylcholine receptor identified by mass spectrometry: implications for receptor topography. Biochemistry. 1989 Nov 14;28(23):9184–9191. doi: 10.1021/bi00449a034. [DOI] [PubMed] [Google Scholar]
  15. Nakanishi K., Zhang H., Lerro K. A., Takekuma S., Yamamoto T., Lien T. H., Sastry L., Baek D. J., Moquin-Pattey C., Boehm M. F. Photoaffinity labeling of rhodopsin and bacteriorhodopsin. Biophys Chem. 1995 Sep-Oct;56(1-2):13–22. doi: 10.1016/0301-4622(95)00010-u. [DOI] [PubMed] [Google Scholar]
  16. Nakayama T. A., Khorana H. G. Orientation of retinal in bovine rhodopsin determined by cross-linking using a photoactivatable analog of 11-cis-retinal. J Biol Chem. 1990 Sep 15;265(26):15762–15769. [PubMed] [Google Scholar]
  17. Plantner J. J., Kean E. L. Carbohydrate composition of bovine rhodopsin. J Biol Chem. 1976 Mar 25;251(6):1548–1552. [PubMed] [Google Scholar]
  18. Plantner J. J., Le M. L., Kean E. L. Enzymatic deglycosylation of bovine rhodopsin. Exp Eye Res. 1991 Aug;53(2):269–274. doi: 10.1016/0014-4835(91)90083-q. [DOI] [PubMed] [Google Scholar]
  19. Poulter L., Earnest J. P., Stroud R. M., Burlingame A. L. Structure, oligosaccharide structures, and posttranslationally modified sites of the nicotinic acetylcholine receptor. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6645–6649. doi: 10.1073/pnas.86.17.6645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schertler G. F., Hargrave P. A. Projection structure of frog rhodopsin in two crystal forms. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11578–11582. doi: 10.1073/pnas.92.25.11578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schertler G. F., Villa C., Henderson R. Projection structure of rhodopsin. Nature. 1993 Apr 22;362(6422):770–772. doi: 10.1038/362770a0. [DOI] [PubMed] [Google Scholar]
  22. Shoelson S. E., Lee J., Lynch C. S., Backer J. M., Pilch P. F. BpaB25 insulins. Photoactivatable analogues that quantitatively cross-link, radiolabel, and activate the insulin receptor. J Biol Chem. 1993 Feb 25;268(6):4085–4091. [PubMed] [Google Scholar]
  23. Tomich J. M., Carson L. W., Kanes K. J., Vogelaar N. J., Emerling M. R., Richards J. H. Prevention of aggregation of synthetic membrane-spanning peptides by addition of detergent. Anal Biochem. 1988 Oct;174(1):197–203. doi: 10.1016/0003-2697(88)90535-0. [DOI] [PubMed] [Google Scholar]
  24. Tsukihara T., Aoyama H., Yamashita E., Tomizaki T., Yamaguchi H., Shinzawa-Itoh K., Nakashima R., Yaono R., Yoshikawa S. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science. 1996 May 24;272(5265):1136–1144. doi: 10.1126/science.272.5265.1136. [DOI] [PubMed] [Google Scholar]
  25. Williams K. P., Shoelson S. E. A photoaffinity scan maps regions of the p85 SH2 domain involved in phosphoprotein binding. J Biol Chem. 1993 Mar 15;268(8):5361–5364. [PubMed] [Google Scholar]
  26. Wilmanns M., Lappalainen P., Kelly M., Sauer-Eriksson E., Saraste M. Crystal structure of the membrane-exposed domain from a respiratory quinol oxidase complex with an engineered dinuclear copper center. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):11955–11959. doi: 10.1073/pnas.92.26.11955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. le Maire M., Deschamps S., Møller J. V., Le Caer J. P., Rossier J. Electrospray ionization mass spectrometry on hydrophobic peptides electroeluted from sodium dodecyl sulfate-polyacrylamide gel electrophoresis application to the topology of the sarcoplasmic reticulum Ca2+ ATPase. Anal Biochem. 1993 Oct;214(1):50–57. doi: 10.1006/abio.1993.1455. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES