Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Apr;6(4):873–881. doi: 10.1002/pro.5560060414

Pressure-dependent ionization of Tyr 9 in glutathione S-transferase A1-1: contribution of the C-terminal helix to a "soft" active site.

W M Atkins 1, E C Dietze 1, C Ibarra 1
PMCID: PMC2144754  PMID: 9098897

Abstract

The glutathione S-transferase (GST) isozyme A1-1 contains at its active site a catalytic tyrosine, Tyr9, which hydrogen bonds to, and stabilizes, the thiolate form of glutathione, GS-. In the substrate-free GST A1-1, the Tyr 9 has an unusually low pKa, approximately 8.2, for which the ionization to tyrosinate is monitored conveniently by UV and fluorescence spectroscopy in the tryptophan-free mutant, W21F. In addition, a short alpha-helix, residues 208-222, provides part of the GSH and hydrophobic ligand binding sites, and the helix becomes "disordered" in the absence of ligands. Here, hydrostatic pressure has been used to probe the conformational dynamics of the C-terminal helix, which are apparently linked to Tyr 9 ionization. The extent of ionization of Tyr 9 at pH 7.6 is increased dramatically at low pressures (p1/2 = 0.52 kbar), based on fluorescence titration of Tyr 9. The mutant protein W21F:Y9F exhibits no changes in tyrosine fluorescence up to 1.2 kbar; pressure specifically ionizes Tyr 9. The volume change, delta V, for the pressure-dependent ionization of Tyr 9 at pH 7.6, 19 degrees C, was -33 +/- 3 mL/mol. In contrast, N-acetyl tyrosine exhibits a delta V for deprotonation of -11 +/- 1 mL/mol, beginning from the same extent of initial ionization, pH 9.5. The pressure-dependent ionization is completely reversible for both Tyr 9 and N-acetyl tyrosine. Addition of S-methyl GSH converted the "soft" active site to a noncompressible site that exhibited negligible pressure-dependent ionization of Tyr 9 below 0.8 kbar. In addition, Phe 220 forms part of an "aromatic cluster" with Tyr 9 and Phe 10, and interactions among these residues were hypothesized to control the order of the C-terminal helix. The amino acid substitutions F220Y, F2201, and F220L afford proteins that undergo pressure-dependent ionization of Tyr 9 with delta V values of 31 +/- 2 mL/mol, 43 +/- 3 mL/mol, and 29 +/- 2 mL/mol, respectively. The p1/2 values for Tyr 9 ionization were 0.61 kbar, 0.41 kbar, and 0.46 kbar for F220Y, F220I, and F220L, respectively. Together, the results suggest that the C-terminal helix is conformationally heterogeneous in the absence of ligands. The conformations differ little in free energy, but they are significantly different in volume, and mutations at Phe 220 control the conformational distribution.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aceto A., Caccuri A. M., Sacchetta P., Bucciarelli T., Dragani B., Rosato N., Federici G., Di Ilio C. Dissociation and unfolding of Pi-class glutathione transferase. Evidence for a monomeric inactive intermediate. Biochem J. 1992 Jul 1;285(Pt 1):241–245. doi: 10.1042/bj2850241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Atkins W. M., Wang R. W., Bird A. W., Newton D. J., Lu A. Y. The catalytic mechanism of glutathione S-transferase (GST). Spectroscopic determination of the pKa of Tyr-9 in rat alpha 1-1 GST. J Biol Chem. 1993 Sep 15;268(26):19188–19191. [PubMed] [Google Scholar]
  3. Björnestedt R., Stenberg G., Widersten M., Board P. G., Sinning I., Jones T. A., Mannervik B. Functional significance of arginine 15 in the active site of human class alpha glutathione transferase A1-1. J Mol Biol. 1995 Apr 7;247(4):765–773. doi: 10.1016/s0022-2836(05)80154-8. [DOI] [PubMed] [Google Scholar]
  4. Cameron A. D., Sinning I., L'Hermite G., Olin B., Board P. G., Mannervik B., Jones T. A. Structural analysis of human alpha-class glutathione transferase A1-1 in the apo-form and in complexes with ethacrynic acid and its glutathione conjugate. Structure. 1995 Jul 15;3(7):717–727. doi: 10.1016/s0969-2126(01)00206-4. [DOI] [PubMed] [Google Scholar]
  5. Coelho-Sampaio T., Voss E. W., Jr Pressure-induced dissociation of fluorescein from the anti-fluorescein single-chain antibody 4-4-20. Biochemistry. 1993 Oct 19;32(41):10929–10935. doi: 10.1021/bi00092a001. [DOI] [PubMed] [Google Scholar]
  6. Di Primo C., Hui Bon Hoa G., Douzou P., Sligar S. Effect of the tyrosine 96 hydrogen bond on the inactivation of cytochrome P-450cam induced by hydrostatic pressure. Eur J Biochem. 1990 Oct 24;193(2):383–386. doi: 10.1111/j.1432-1033.1990.tb19350.x. [DOI] [PubMed] [Google Scholar]
  7. Dietze E. C., Ibarra C., Dabrowski M. J., Bird A., Atkins W. M. Rational modulation of the catalytic activity of A1-1 glutathione S-transferase: evidence for incorporation of an on-face (pi...HO-Ar) hydrogen bond at tyrosine-9. Biochemistry. 1996 Sep 17;35(37):11938–11944. doi: 10.1021/bi961073r. [DOI] [PubMed] [Google Scholar]
  8. Dirr H., Reinemer P., Huber R. X-ray crystal structures of cytosolic glutathione S-transferases. Implications for protein architecture, substrate recognition and catalytic function. Eur J Biochem. 1994 Mar 15;220(3):645–661. doi: 10.1111/j.1432-1033.1994.tb18666.x. [DOI] [PubMed] [Google Scholar]
  9. Erhardt J., Dirr H. Native dimer stabilizes the subunit tertiary structure of porcine class pi glutathione S-transferase. Eur J Biochem. 1995 Jun 1;230(2):614–620. [PubMed] [Google Scholar]
  10. Frye K. J., Perman C. S., Royer C. A. Testing the correlation between delta A and delta V of protein unfolding using m value mutants of staphylococcal nuclease. Biochemistry. 1996 Aug 6;35(31):10234–10239. doi: 10.1021/bi960693p. [DOI] [PubMed] [Google Scholar]
  11. Gerstein M., Chothia C. Packing at the protein-water interface. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10167–10172. doi: 10.1073/pnas.93.19.10167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gross M., Jaenicke R. Proteins under pressure. The influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes. Eur J Biochem. 1994 Apr 15;221(2):617–630. doi: 10.1111/j.1432-1033.1994.tb18774.x. [DOI] [PubMed] [Google Scholar]
  13. Kharakoz D. P. Volumetric properties of proteins and their analogs in diluted water solutions. 1. Partial volumes of amino acids at 15-55 degrees C. Biophys Chem. 1989 Oct;34(2):115–125. doi: 10.1016/0301-4622(89)80049-3. [DOI] [PubMed] [Google Scholar]
  14. Kolm R. H., Sroga G. E., Mannervik B. Participation of the phenolic hydroxyl group of Tyr-8 in the catalytic mechanism of human glutathione transferase P1-1. Biochem J. 1992 Jul 15;285(Pt 2):537–540. doi: 10.1042/bj2850537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kubo Y., Armstrong R. N. Observation of a substituent effect on the stereoselectivity of glutathione S-transferase toward para-substituted 4-phenyl-3-buten-2-ones. Chem Res Toxicol. 1989 May-Jun;2(3):144–145. doi: 10.1021/tx00009a003. [DOI] [PubMed] [Google Scholar]
  16. Morild E. The theory of pressure effects on enzymes. Adv Protein Chem. 1981;34:93–166. doi: 10.1016/s0065-3233(08)60519-7. [DOI] [PubMed] [Google Scholar]
  17. Nölting B., Sligar S. G. Adiabatic compressibility of molten globules. Biochemistry. 1993 Nov 23;32(46):12319–12323. doi: 10.1021/bi00097a007. [DOI] [PubMed] [Google Scholar]
  18. Paladini A. A., Jr Fluorescence polarization at high pressure. Methods Enzymol. 1986;130:493–518. doi: 10.1016/0076-6879(86)30023-5. [DOI] [PubMed] [Google Scholar]
  19. Royer C. A. Application of pressure to biochemical equilibria: the other thermodynamic variable. Methods Enzymol. 1995;259:357–377. doi: 10.1016/0076-6879(95)59052-8. [DOI] [PubMed] [Google Scholar]
  20. Silva J. L., Foguel D., Da Poian A. T., Prevelige P. E. The use of hydrostatic pressure as a tool to study viruses and other macromolecular assemblages. Curr Opin Struct Biol. 1996 Apr;6(2):166–175. doi: 10.1016/s0959-440x(96)80071-6. [DOI] [PubMed] [Google Scholar]
  21. Sinning I., Kleywegt G. J., Cowan S. W., Reinemer P., Dirr H. W., Huber R., Gilliland G. L., Armstrong R. N., Ji X., Board P. G. Structure determination and refinement of human alpha class glutathione transferase A1-1, and a comparison with the Mu and Pi class enzymes. J Mol Biol. 1993 Jul 5;232(1):192–212. doi: 10.1006/jmbi.1993.1376. [DOI] [PubMed] [Google Scholar]
  22. Stenberg G., Board P. G., Mannervik B. Mutation of an evolutionarily conserved tyrosine residue in the active site of a human class Alpha glutathione transferase. FEBS Lett. 1991 Nov 18;293(1-2):153–155. doi: 10.1016/0014-5793(91)81174-7. [DOI] [PubMed] [Google Scholar]
  23. Vidugiris G. J., Markley J. L., Royer C. A. Evidence for a molten globule-like transition state in protein folding from determination of activation volumes. Biochemistry. 1995 Apr 18;34(15):4909–4912. doi: 10.1021/bi00015a001. [DOI] [PubMed] [Google Scholar]
  24. Wang R. W., Bird A. W., Newton D. J., Lu A. Y., Atkins W. M. Fluorescence characterization of Trp 21 in rat glutathione S-transferase 1-1: microconformational changes induced by S-hexyl glutathione. Protein Sci. 1993 Dec;2(12):2085–2094. doi: 10.1002/pro.5560021209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wang R. W., Newton D. J., Pickett C. B., Lu A. Y. Site-directed mutagenesis of glutathione S-transferase YaYa: nonessential role of histidine in catalysis. Arch Biochem Biophys. 1991 May 1;286(2):574–578. doi: 10.1016/0003-9861(91)90082-t. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES