Abstract
Coliphage 186 B is a 72-amino acid protein belonging to the Ogr family of analogous transcription factors present in P2-like phage, which contain a Cys-X2-Cys-X22-Cys-X4-Cys presumptive zinc-finger motif. The molecular characterization of these proteins has been hampered by their insolubility, a difficulty overcome in the present study by obtaining B as a soluble cadmium-containing derivative (CdB). Atomic absorption spectroscopy showed the presence of one atom of cadmium per molecule of purified CdB. The UV absorption spectrum revealed a shoulder at 250 nm, characteristic of CysS-Cd(II) ligand-to-metal charge-transfer transitions, and the difference absorption coefficient after acidification (delta epsilon 248, 24 mM-1 cm-1) indicated the presence of a Cd(Cys-S)4 center. Gel mobility shift analysis of CdB with a 186 late promoter demonstrated specific DNA-binding (KD, app 3-4 microM) and the protein was shown to activate transcription in vitro from a promoter-reporter plasmid construct. The B DNA-binding site was mapped by gel shift and DNAase I cleavage protection experiments to an area between-70 and -43 relative to the transcription start site, coincident with the consensus sequence, GTTGT-N8-TNANCCA, from -66 to -47 of the 186 and P2 late promoters. Inactive B point mutants were obtained in the putative DNA-binding loop of the N-terminal zinc-finger motif and in a central region thought to interact with the Escherichia coli RNA polymerase alpha-subunit. A truncated B mutant comprising the first 53 amino acids (B1-53) exhibited close to wild-type activity, showed a DNA-binding affinity similar to that of the full-length protein, and could be reconstituted with either Cd or Zn. Gel permeation analysis revealed that B1-53 was a majority dimeric species whereas wild-type B showed larger oligomers. 186 B therefore exhibits a potentially linear organization of functional regions comprising an N-terminal C4 zinc-finger DNA-binding region, a dispensable C-terminal region involved in protein self-association, and a central region that interacts with RNA polymerase.
Full Text
The Full Text of this article is available as a PDF (4.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ayers D. J., Sunshine M. G., Six E. W., Christie G. E. Mutations affecting two adjacent amino acid residues in the alpha subunit of RNA polymerase block transcriptional activation by the bacteriophage P2 Ogr protein. J Bacteriol. 1994 Dec;176(24):7430–7438. doi: 10.1128/jb.176.24.7430-7438.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barberis A., Pearlberg J., Simkovich N., Farrell S., Reinagel P., Bamdad C., Sigal G., Ptashne M. Contact with a component of the polymerase II holoenzyme suffices for gene activation. Cell. 1995 May 5;81(3):359–368. doi: 10.1016/0092-8674(95)90389-5. [DOI] [PubMed] [Google Scholar]
- Birkeland N. K., Lindquist B. H. Coliphage P2 late control gene ogr. DNA sequence and product identification. J Mol Biol. 1986 Apr 5;188(3):487–490. doi: 10.1016/0022-2836(86)90170-1. [DOI] [PubMed] [Google Scholar]
- Blatter E. E., Ross W., Tang H., Gourse R. L., Ebright R. H. Domain organization of RNA polymerase alpha subunit: C-terminal 85 amino acids constitute a domain capable of dimerization and DNA binding. Cell. 1994 Sep 9;78(5):889–896. doi: 10.1016/s0092-8674(94)90682-3. [DOI] [PubMed] [Google Scholar]
- Busby S., Ebright R. H. Promoter structure, promoter recognition, and transcription activation in prokaryotes. Cell. 1994 Dec 2;79(5):743–746. doi: 10.1016/0092-8674(94)90063-9. [DOI] [PubMed] [Google Scholar]
- Christie G. E., Calendar R. Bacteriophage P2 late promoters. II. Comparison of the four late promoter sequences. J Mol Biol. 1985 Feb 5;181(3):373–382. doi: 10.1016/0022-2836(85)90226-8. [DOI] [PubMed] [Google Scholar]
- Christie G. E., Calendar R. Bacteriophage P2 late promoters. Transcription initiation sites for two late mRNAs. J Mol Biol. 1983 Jul 15;167(4):773–790. doi: 10.1016/s0022-2836(83)80110-7. [DOI] [PubMed] [Google Scholar]
- Chung C. T., Niemela S. L., Miller R. H. One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2172–2175. doi: 10.1073/pnas.86.7.2172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Civitareale D., Saiardi A., Falasca P. Purification and characterization of thyroid transcription factor 2. Biochem J. 1994 Dec 15;304(Pt 3):981–985. doi: 10.1042/bj3040981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dibbens J. A., Egan J. B. Control of gene expression in the temperate coliphage 186. IX. B is the sole phage function needed to activate transcription of the phage late genes. Mol Microbiol. 1992 Sep;6(18):2629–2642. doi: 10.1111/j.1365-2958.1992.tb01440.x. [DOI] [PubMed] [Google Scholar]
- Dibbens J. A., Gregory S. L., Egan J. B. Control of gene expression in the temperate coliphage 186. X. The cI repressor directly represses transcription of the late control gene B. Mol Microbiol. 1992 Sep;6(18):2643–2650. doi: 10.1111/j.1365-2958.1992.tb01441.x. [DOI] [PubMed] [Google Scholar]
- Finnegan J., Egan J. B. Physical map of the coliphage 186 chromosome. I. Gene content of the BamHI, PstI and other restriction fragments. Mol Gen Genet. 1979;172(3):287–293. doi: 10.1007/BF00271728. [DOI] [PubMed] [Google Scholar]
- Fujiki H., Palm P., Zillig W., Calendar R., Sunshine M. Identification of a mutation within the structural gene for the a subunit of DNA-dependent RNA polymerase of E. coli. Mol Gen Genet. 1976 Apr 23;145(1):19–22. doi: 10.1007/BF00331552. [DOI] [PubMed] [Google Scholar]
- Gebhardt K., King R. A., Christie G. E., Lindqvist B. H. Mutational analysis of the bacteriophage P2 Ogr protein: truncation of the carboxy terminus. J Bacteriol. 1993 Dec;175(23):7724–7726. doi: 10.1128/jb.175.23.7724-7726.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagman J., Gutch M. J., Lin H., Grosschedl R. EBF contains a novel zinc coordination motif and multiple dimerization and transcriptional activation domains. EMBO J. 1995 Jun 15;14(12):2907–2916. doi: 10.1002/j.1460-2075.1995.tb07290.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halling C., Sunshine M. G., Lane K. B., Six E. W., Calendar R. A mutation of the transactivation gene of satellite bacteriophage P4 that suppresses the rpoA109 mutation of Escherichia coli. J Bacteriol. 1990 Jul;172(7):3541–3548. doi: 10.1128/jb.172.7.3541-3548.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henehan C. J., Pountney D. L., Zerbe O., Vasák M. Identification of cysteine ligands in metalloproteins using optical and NMR spectroscopy: cadmium-substituted rubredoxin as a model [Cd(CysS)4]2- center. Protein Sci. 1993 Oct;2(10):1756–1764. doi: 10.1002/pro.5560021019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hocking S. M., Egan J. B. Genetic studies of coliphage 186. I. Genes associated with phage morphogenesis. J Virol. 1982 Dec;44(3):1056–1067. doi: 10.1128/jvi.44.3.1056-1067.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hocking S. M., Egan J. B. Genetic studies of coliphage 186. II. Genes associated with phage replication and host cell lysis. J Virol. 1982 Dec;44(3):1068–1071. doi: 10.1128/jvi.44.3.1068-1071.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang R. P., Adamson E. D. Characterization of the DNA-binding properties of the early growth response-1 (Egr-1) transcription factor: evidence for modulation by a redox mechanism. DNA Cell Biol. 1993 Apr;12(3):265–273. doi: 10.1089/dna.1993.12.265. [DOI] [PubMed] [Google Scholar]
- Jin S., Chen Y., Christie G. E., Benedik M. J. Regulation of the Serratia marcescens extracellular nuclease: positive control by a homolog of P2 Ogr encoded by a cryptic prophage. J Mol Biol. 1996 Feb 23;256(2):264–278. doi: 10.1006/jmbi.1996.0084. [DOI] [PubMed] [Google Scholar]
- Kalionis B., Dodd I. B., Egan J. B. Control of gene expression in the P2-related template coliphages. III. DNA sequence of the major control region of phage 186. J Mol Biol. 1986 Sep 20;191(2):199–209. doi: 10.1016/0022-2836(86)90257-3. [DOI] [PubMed] [Google Scholar]
- Kalionis B., Pritchard M., Egan J. B. Control of gene expression in the P2-related temperate coliphages. IV. Concerning the late control gene and control of its transcription. J Mol Biol. 1986 Sep 20;191(2):211–220. doi: 10.1016/0022-2836(86)90258-5. [DOI] [PubMed] [Google Scholar]
- King R. A., Anders D. L., Christie G. E. Site-directed mutagenesis of an amino acid residue in the bacteriophage P2 ogr protein implicated in interaction with Escherichia coli RNA polymerase. Mol Microbiol. 1992 Nov;6(22):3313–3320. doi: 10.1111/j.1365-2958.1992.tb02199.x. [DOI] [PubMed] [Google Scholar]
- Klug A., Schwabe J. W. Protein motifs 5. Zinc fingers. FASEB J. 1995 May;9(8):597–604. [PubMed] [Google Scholar]
- Le Gouill C., Parent J. L., Rola-Pleszczynski M., Stankova J. Analysis of recombinant plasmids by a modified alkaline lysis method. Anal Biochem. 1994 May 15;219(1):164–164. doi: 10.1006/abio.1994.1250. [DOI] [PubMed] [Google Scholar]
- Lee T. C., Christie G. E. Purification and properties of the bacteriophage P2 ogr gene product. A prokaryotic zinc-binding transcriptional activator. J Biol Chem. 1990 May 5;265(13):7472–7477. [PubMed] [Google Scholar]
- Lisser S., Margalit H. Compilation of E. coli mRNA promoter sequences. Nucleic Acids Res. 1993 Apr 11;21(7):1507–1516. doi: 10.1093/nar/21.7.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lopez P. J., Iost I., Dreyfus M. The use of a tRNA as a transcriptional reporter: the T7 late promoter is extremely efficient in Escherichia coli but its transcripts are poorly expressed. Nucleic Acids Res. 1994 Apr 11;22(7):1186–1193. doi: 10.1093/nar/22.7.1186. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mandel-Gutfreund Y., Schueler O., Margalit H. Comprehensive analysis of hydrogen bonds in regulatory protein DNA-complexes: in search of common principles. J Mol Biol. 1995 Oct 20;253(2):370–382. doi: 10.1006/jmbi.1995.0559. [DOI] [PubMed] [Google Scholar]
- McBryant S. J., Gedulin B., Clemens K. R., Wright P. E., Gottesfeld J. M. Assessment of major and minor groove DNA interactions by the zinc fingers of Xenopus transcription factor IIIA. Nucleic Acids Res. 1996 Jul 1;24(13):2567–2574. doi: 10.1093/nar/24.13.2567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Myers L. C., Verdine G. L., Wagner G. Solution structure of the DNA methyl phosphotriester repair domain of Escherichia coli Ada. Biochemistry. 1993 Dec 28;32(51):14089–14094. doi: 10.1021/bi00214a003. [DOI] [PubMed] [Google Scholar]
- Neufing P. J., Shearwin K. E., Camerotto J., Egan J. B. The CII protein of bacteriophage 186 establishes lysogeny by activating a promoter upstream of the lysogenic promoter. Mol Microbiol. 1996 Aug;21(4):751–761. doi: 10.1046/j.1365-2958.1996.351394.x. [DOI] [PubMed] [Google Scholar]
- O'Halloran T. V. Transition metals in control of gene expression. Science. 1993 Aug 6;261(5122):715–725. doi: 10.1126/science.8342038. [DOI] [PubMed] [Google Scholar]
- Radtke F., Georgiev O., Müller H. P., Brugnera E., Schaffner W. Functional domains of the heavy metal-responsive transcription regulator MTF-1. Nucleic Acids Res. 1995 Jun 25;23(12):2277–2286. doi: 10.1093/nar/23.12.2277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakashita H., Sakuma T., Akitomo Y., Ohkubo T., Kainosho M., Sekiguchi M., Morikawa K. Sequence-specific DNA recognition of the Escherichia coli Ada protein associated with the methylation-dependent functional switch for transcriptional regulation. J Biochem. 1995 Dec;118(6):1184–1191. doi: 10.1093/oxfordjournals.jbchem.a125005. [DOI] [PubMed] [Google Scholar]
- Sauer B., Calendar R., Ljungquist E., Six E., Sunshine M. G. Interaction of satellite phage P4 with phage 186 helper. Virology. 1982 Jan 30;116(2):523–534. doi: 10.1016/0042-6822(82)90145-3. [DOI] [PubMed] [Google Scholar]
- Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
- Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
- Sun J., Inouye M., Inouye S. Association of a retroelement with a P4-like cryptic prophage (retronphage phi R73) integrated into the selenocystyl tRNA gene of Escherichia coli. J Bacteriol. 1991 Jul;173(13):4171–4181. doi: 10.1128/jb.173.13.4171-4181.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sunshine M. G., Sauer B. A bacterial mutation blocking P2 phage late gene expression. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2770–2774. doi: 10.1073/pnas.72.7.2770. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki M., Gerstein M. Binding geometry of alpha-helices that recognize DNA. Proteins. 1995 Dec;23(4):525–535. doi: 10.1002/prot.340230407. [DOI] [PubMed] [Google Scholar]
- Taylor W. E., Suruki H. K., Lin A. H., Naraghi-Arani P., Igarashi R. Y., Younessian M., Katkus P., Vo N. V. Designing zinc-finger ADR1 mutants with altered specificity of DNA binding to T in UAS1 sequences. Biochemistry. 1995 Mar 14;34(10):3222–3230. doi: 10.1021/bi00010a011. [DOI] [PubMed] [Google Scholar]
- Werner M. H., Gronenborn A. M., Clore G. M. Intercalation, DNA kinking, and the control of transcription. Science. 1996 Feb 9;271(5250):778–784. doi: 10.1126/science.271.5250.778. [DOI] [PubMed] [Google Scholar]
- Xue Q., Egan J. B. Tail sheath and tail tube genes of the temperate coliphage 186. Virology. 1995 Sep 10;212(1):218–221. doi: 10.1006/viro.1995.1471. [DOI] [PubMed] [Google Scholar]
- Yu X., Wu Z., Fenselau C. Covalent sequestration of melphalan by metallothionein and selective alkylation of cysteines. Biochemistry. 1995 Mar 14;34(10):3377–3385. doi: 10.1021/bi00010a029. [DOI] [PubMed] [Google Scholar]
