Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1986 Apr;166(1):269–274. doi: 10.1128/jb.166.1.269-274.1986

Purification and characterization of glucose oxidase from ligninolytic cultures of Phanerochaete chrysosporium.

R L Kelley, C A Reddy
PMCID: PMC214586  PMID: 3957868

Abstract

Glucose oxidase, an important source of hydrogen peroxide in lignin-degrading cultures of Phanerochaete chrysosporium, was purified to electrophoretic homogeneity by a combination of ion-exchange and molecular sieve chromatography. The enzyme is a flavoprotein with an apparent native molecular weight of 180,000 and a denatured molecular weight of 80,000. This enzyme does not appear to be a glycoprotein. It gives optimal activity with D-glucose, which is stoichiometrically oxidized to D-gluconate. The enzyme has a relatively broad pH optimum of 4 to 5. It is inhibited by Ag+ (10 mM) and o-phthalate (100 mM), but not by Cu2+, NaF, or KCN (each 10 mM).

Full text

PDF
269

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADAMS E. C., Jr, MAST R. L., FREE A. H. Specificity of glucose oxidase. Arch Biochem Biophys. 1960 Dec;91:230–234. doi: 10.1016/0003-9861(60)90495-1. [DOI] [PubMed] [Google Scholar]
  2. Andersson L. A., Renganathan V., Chiu A. A., Loehr T. M., Gold M. H. Spectral characterization of diarylpropane oxygenase, a novel peroxide-dependent, lignin-degrading heme enzyme. J Biol Chem. 1985 May 25;260(10):6080–6087. [PubMed] [Google Scholar]
  3. CERLETTI P., STROM R., GIORDANO M. G. Flavine peptides in tissues: the prosthetic group of succinic dehydrogenase. Arch Biochem Biophys. 1963 Jun;101:423–428. doi: 10.1016/0003-9861(63)90497-1. [DOI] [PubMed] [Google Scholar]
  4. Eckhardt A. E., Hayes C. E., Goldstein I. J. A sensitive fluorescent method for the detection of glycoproteins in polyacrylamide gels. Anal Biochem. 1976 May 21;73(1):192–197. doi: 10.1016/0003-2697(76)90154-8. [DOI] [PubMed] [Google Scholar]
  5. Faison B. D., Kirk T. K. Relationship Between Lignin Degradation and Production of Reduced Oxygen Species by Phanerochaete chrysosporium. Appl Environ Microbiol. 1983 Nov;46(5):1140–1145. doi: 10.1128/aem.46.5.1140-1145.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Forney L. J., Reddy C. A., Pankratz H. S. Ultrastructural Localization of Hydrogen Peroxide Production in Ligninolytic Phanerochaete chrysosporium Cells. Appl Environ Microbiol. 1982 Sep;44(3):732–736. doi: 10.1128/aem.44.3.732-736.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Greene R. V., Gould J. M. Fatty acyl-coenzyme A oxidase activity and H2O2 production in Phanerochaete chrysosporium mycelia. Biochem Biophys Res Commun. 1984 Jan 30;118(2):437–443. doi: 10.1016/0006-291x(84)91322-6. [DOI] [PubMed] [Google Scholar]
  8. Janssen F. W., Ruelius H. W. Carbohydrate oxidase, a novel enzyme from Polyporus obtusus. II. Specificity and characterization of reaction products. Biochim Biophys Acta. 1968 Nov 19;167(3):501–510. doi: 10.1016/0005-2744(68)90040-5. [DOI] [PubMed] [Google Scholar]
  9. Kelley R. L., Reddy C. A. Ethylene production from alpha-oxo-gamma-methylthiobutyric acid is a sensitive measure of ligninolytic activity by Phanerochaete chrysosporium. Biochem J. 1982 Aug 15;206(2):423–425. doi: 10.1042/bj2060423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kersten P. J., Tien M., Kalyanaraman B., Kirk T. K. The ligninase of Phanerochaete chrysosporium generates cation radicals from methoxybenzenes. J Biol Chem. 1985 Mar 10;260(5):2609–2612. [PubMed] [Google Scholar]
  11. Kutsuki H., Gold M. H. Generation of hydroxyl radical and its involvement in lignin degradation by Phanerochaete chrysosporium. Biochem Biophys Res Commun. 1982 Nov 30;109(2):320–327. doi: 10.1016/0006-291x(82)91723-5. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Robinson J., Cooper J. M. Method of determining oxygen concentrations in biological media, suitable for calibration of the oxygen electrode. Anal Biochem. 1970 Feb;33(2):390–399. doi: 10.1016/0003-2697(70)90310-6. [DOI] [PubMed] [Google Scholar]
  15. SWOBODA B. E., MASSEY V. PURIFICATION AND PROPERTIES OF THE GLUCOSE OXIDASE FROM ASPERGILLUS NIGER. J Biol Chem. 1965 May;240:2209–2215. [PubMed] [Google Scholar]
  16. Tien M., Kirk T. K. Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H(2)O(2)-requiring oxygenase. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2280–2284. doi: 10.1073/pnas.81.8.2280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  18. Yamada Y., Lizuka K., Aida K., Uemura T. Enzymatic studies on the oxidation of sugar and sugar alcohol. 3. Purification and properties of L-sorbose oxidase from Trametes sanguinea. J Biochem. 1967 Aug;62(2):223–229. doi: 10.1093/oxfordjournals.jbchem.a128652. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES