Abstract
Escherichia coli expresses a specific ammonium (methylammonium) transport system (Amt) when cultured with glutamate or glutamine as the nitrogen source. Over 95% of this Amt activity is repressed by growth of wild-type cells on media containing ammonia. The control of Amt expression was studied with strains containing specific mutations in the glnALG operon. GlnA- (glutamine synthetase deficient) mutants, which contain polar mutations on glnL and glnG genes and therefore have the Reg- phenotype (fail to turn on nitrogen-regulated operons such as histidase), expressed less than 10% of the Amt activity observed for the parental strain. Similarly, low levels of Amt were found in GlnG mutants having the GlnA+ Reg- phenotype. However, GlnA- RegC mutants (a phenotype constitutive for histidase) contained over 70% of the parental Amt activity. At steady-state levels, GlnA- RegC mutants accumulated chemically unaltered [14C]methylammonium against a 60- to 80-fold concentration gradient, whereas the labeled substrate was trapped within parental cells as gamma-glutamylmethylamide. GlnL Reg- mutants (normal glutamine synthetase regulation) had less than 4% of the Amt activity observed for the parental strain. However, the Amt activity of GlnL RegC mutants was slightly higher than that of the parental strain and was not repressed during growth of cells in media containing ammonia. These findings demonstrate that glutamine synthetase is not required for Amt in E. coli. The loss of Amt in certain GlnA- strains is due to polar effects on glnL and glnG genes, whose products are involved in expression of nitrogen-regulated genes, including that for Amt.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barnes E. M., Jr, Zimniak P., Jayakumar A. Role of glutamine synthetase in the uptake and metabolism of methylammonium by Azotobacter vinelandii. J Bacteriol. 1983 Nov;156(2):752–757. doi: 10.1128/jb.156.2.752-757.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barnes E. M., Jr, Zimniak P. Transport of ammonium and methylammonium ions by Azotobacter vinelandii. J Bacteriol. 1981 May;146(2):512–516. doi: 10.1128/jb.146.2.512-516.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Damper P. D., Epstein W., Rosen B. P., Sorensen E. N. Thallous ion is accumulated by potassium transport systems in Escherichia coli. Biochemistry. 1979 Sep 18;18(19):4165–4169. doi: 10.1021/bi00586a018. [DOI] [PubMed] [Google Scholar]
- Gober J. W., Kashket E. R. Methylammonium uptake by Rhizobium sp. strain 32H1. J Bacteriol. 1983 Mar;153(3):1196–1201. doi: 10.1128/jb.153.3.1196-1201.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon J. K., Moore R. A. Ammonium and methylammonium transport by the nitrogen-fixing bacterium Azotobacter vinelandii. J Bacteriol. 1981 Nov;148(2):435–442. doi: 10.1128/jb.148.2.435-442.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guterman S. K., Roberts G., Tyler B. Polarity in the glnA operon: suppression of the reg- phenotype by rho mutations. J Bacteriol. 1982 Jun;150(3):1314–1321. doi: 10.1128/jb.150.3.1314-1321.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haaker H., Veeger C. Involvement of the cytoplasmic membrane in nitrogen fixation by Azotobacter vinelandii. Eur J Biochem. 1977 Jul 1;77(1):1–10. doi: 10.1111/j.1432-1033.1977.tb11634.x. [DOI] [PubMed] [Google Scholar]
- Jayakumar A., Barnes E. M., Jr A filtration method for measuring cellular uptake of [14C]methylamine and other highly permeant solutes. Anal Biochem. 1983 Dec;135(2):475–478. doi: 10.1016/0003-2697(83)90715-7. [DOI] [PubMed] [Google Scholar]
- Jayakumar A., Barnes E. M., Jr The role of glutamine in regulation of ammonium transport in Azotobacter vinelandii. Arch Biochem Biophys. 1984 May 15;231(1):95–101. doi: 10.1016/0003-9861(84)90366-7. [DOI] [PubMed] [Google Scholar]
- Jayakumar A., Epstein W., Barnes E. M., Jr Characterization of ammonium (methylammonium)/potassium antiport in Escherichia coli. J Biol Chem. 1985 Jun 25;260(12):7528–7532. [PubMed] [Google Scholar]
- Kleiner D. Ammonium (methylammonium) transport by Klebsiella pneumoniae. Biochim Biophys Acta. 1982 Jun 28;688(3):702–708. doi: 10.1016/0005-2736(82)90282-6. [DOI] [PubMed] [Google Scholar]
- Kleiner D., Fitzke E. Some properties of a new electrogenic transport system: the ammonium (methylammonium) carrier from Clostridium pasteurianum. Biochim Biophys Acta. 1981 Feb 20;641(1):138–147. doi: 10.1016/0005-2736(81)90577-0. [DOI] [PubMed] [Google Scholar]
- Kleinschmidt J. A., Kleiner D. The glutamine synthetase from Azotobacter vinelandii: purification, characterization, regulation and localization. Eur J Biochem. 1978 Aug 15;89(1):51–60. doi: 10.1111/j.1432-1033.1978.tb20895.x. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- MacNeil T., MacNeil D., Tyler B. Fine-structure deletion map and complementation analysis of the glnA-glnL-glnG region in Escherichia coli. J Bacteriol. 1982 Jun;150(3):1302–1313. doi: 10.1128/jb.150.3.1302-1313.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacNeil T., Roberts G. P., MacNeil D., Tyler B. The products of glnL and glnG are bifunctional regulatory proteins. Mol Gen Genet. 1982;188(2):325–333. doi: 10.1007/BF00332696. [DOI] [PubMed] [Google Scholar]
- Magasanik B. Genetic control of nitrogen assimilation in bacteria. Annu Rev Genet. 1982;16:135–168. doi: 10.1146/annurev.ge.16.120182.001031. [DOI] [PubMed] [Google Scholar]
- Servín-González L., Bastarrachea F. Nitrogen regulation of synthesis of the high affinity methylammonium transport system of Escherichia coli. J Gen Microbiol. 1984 Dec;130(12):3071–3077. doi: 10.1099/00221287-130-12-3071. [DOI] [PubMed] [Google Scholar]
- Smith G. R., Halpern Y. S., Magasanik B. Genetic and metabolic control of enzymes responsible for histidine degradation in Salmonella typhimurium. 4-imidazolone-5-propionate amidohydrolase and N-formimino-L-glutamate formiminohydrolase. J Biol Chem. 1971 May 25;246(10):3320–3329. [PubMed] [Google Scholar]
- Stevenson R., Silver S. Methylammonium uptake by Escherichia coli: evidence for a bacterial NH4+ transport system. Biochem Biophys Res Commun. 1977 Apr 25;75(4):1133–1139. doi: 10.1016/0006-291x(77)91501-7. [DOI] [PubMed] [Google Scholar]