Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1984 Oct;160(1):67–75. doi: 10.1128/jb.160.1.67-75.1984

Effect of castanospermine on the structure and secretion of glycoprotein enzymes in Aspergillus fumigatus.

A D Elbein, M Mitchell, R J Molyneux
PMCID: PMC214682  PMID: 6237100

Abstract

Aspergillus fumigatus secretes a number of glycosidases into the culture medium when the cells are grown in a mineral salts medium containing guar flour (a galactomannan) as the carbon source. At least some of these glycosidases have been reported to be glycoproteins having N-linked oligosaccharides. In this study, we examined the effect of the glycoprotein processing inhibitor, castanospermine, on the structures of the N-linked oligosaccharides and on the secretion of various glycosidases. Cells were grown in the presence of various amounts of castanospermine; at different times of growth, samples of the media were removed for the measurement of enzymatic activity. Of the three glycosidases assayed, beta-hexosaminidase was most sensitive to castanospermine; and its activity was depressed 30 to 40% at 100 micrograms of alkaloid per ml and even more at higher alkaloid concentrations. On the other hand, beta-galactosidase activity was hardly diminished at castanospermine levels of up to 1 mg/ml, but significant inhibition was observed at 2 mg/ml. beta-Galactosidase was intermediate in sensitivity. Cells were grown in the presence or absence of castanospermine and labeled with [2-3H]mannose, [6-3H]glucosamine, or [1-3H]galactose to label the sugar portion of the glycoproteins. The secreted glycoproteins were digested with pronase to obtain glycopeptides, and these were identified on Bio-Gel P-4 (Bio-Rad Laboratories). The glycopeptides were then digested with endoglucosaminidase H to release the peptide portion of susceptible structures, and the released oligosaccharides were reisolated and identified on Bio-Gel P-4. The oligosaccharides from control and castanospermine-grown cells were identified by a combination of enzymatic and chemical studies. In control cells, the oligosaccharide appeared to be mostly Man8GlcNAc and Man9GlcNAc, whereas in the presence of alkaloid, the major structures were Glc3Man7GlcNAc and Glc3Man8GlcNAc. These data fit previous observations that castanospermine inhibits glucosidase I.

Full text

PDF
67

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adya S., Elbein A. D. Glycoprotein enzymes secreted by Aspergillus niger: purification and properties of alpha-glaactosidase. J Bacteriol. 1977 Feb;129(2):850–856. doi: 10.1128/jb.129.2.850-856.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Akasaki M., Suzuki M., Funakoshi I., Yamashina I. Characterization of beta-galactosidase from a special strain of Aspergillus oryzae. J Biochem. 1976 Dec;80(6):1195–1200. doi: 10.1093/oxfordjournals.jbchem.a131389. [DOI] [PubMed] [Google Scholar]
  3. Chen W. W., Lennarz W. J. Enzymatic excision of glucosyl units linked to the oligosaccharide chains of glycoproteins. J Biol Chem. 1978 Aug 25;253(16):5780–5785. [PubMed] [Google Scholar]
  4. Cox G. S. Synthesis of the glycoprotein hormone alpha subunit and placental alkaline phosphatase by HeLa cells: effect of tunicamycin, 2-deoxyglucose, and sodium butyrate. Biochemistry. 1981 Aug 18;20(17):4893–4900. doi: 10.1021/bi00520a014. [DOI] [PubMed] [Google Scholar]
  5. Eagon P. K., Heath E. C. Glycoprotein biosynthesis in myeloma cells. Characterization on nonglycosylated immunoglobulin light chain secreted in presence of 2-deoxy-D-glucose. J Biol Chem. 1977 Apr 10;252(7):2372–2383. [PubMed] [Google Scholar]
  6. Elbein A. D., Adya S., Lee Y. C. Purification and properties of a beta-mannosidase from Aspergillus niger. J Biol Chem. 1977 Mar 25;252(6):2026–2031. [PubMed] [Google Scholar]
  7. Elbein A. D. Inhibitors of the biosynthesis and processing of N-linked oligosaccharides. CRC Crit Rev Biochem. 1984;16(1):21–49. doi: 10.3109/10409238409102805. [DOI] [PubMed] [Google Scholar]
  8. Grinna L. S., Robbins P. W. Substrate specificities of rat liver microsomal glucosidases which process glycoproteins. J Biol Chem. 1980 Mar 25;255(6):2255–2258. [PubMed] [Google Scholar]
  9. HAKOMORI S. A RAPID PERMETHYLATION OF GLYCOLIPID, AND POLYSACCHARIDE CATALYZED BY METHYLSULFINYL CARBANION IN DIMETHYL SULFOXIDE. J Biochem. 1964 Feb;55:205–208. [PubMed] [Google Scholar]
  10. Hasilik A., Neufeld E. F. Biosynthesis of lysosomal enzymes in fibroblasts. Synthesis as precursors of higher molecular weight. J Biol Chem. 1980 May 25;255(10):4937–4945. [PubMed] [Google Scholar]
  11. Hickman S., Kulczycki A., Jr, Lynch R. G., Kornfeld S. Studies of the mechanism of tunicamycin in hibition of IgA and IgE secretion by plasma cells. J Biol Chem. 1977 Jun 25;252(12):4402–4408. [PubMed] [Google Scholar]
  12. Hubbard S. C., Ivatt R. J. Synthesis and processing of asparagine-linked oligosaccharides. Annu Rev Biochem. 1981;50:555–583. doi: 10.1146/annurev.bi.50.070181.003011. [DOI] [PubMed] [Google Scholar]
  13. Hurst P. L., Nielsen J., Sullivan P. A., Shepherd M. G. Purification and properties of a cellulase from Aspergillus niger. Biochem J. 1977 Jul 1;165(1):33–41. doi: 10.1042/bj1650033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Iwashita S., Egami F. Alpha-D-fucosidase from Aspergillus oryzae: characterization of alpha-D-fucosidase with alpha-D-galactosidase activity. J Biochem. 1973 Jun;73(6):1217–1222. doi: 10.1093/oxfordjournals.jbchem.a130194. [DOI] [PubMed] [Google Scholar]
  15. Johnson D. C., Schlesinger M. J. Vesicular stomatitis virus and sindbis virus glycoprotein transport to the cell surface is inhibited by ionophores. Virology. 1980 Jun;103(2):407–424. doi: 10.1016/0042-6822(80)90200-7. [DOI] [PubMed] [Google Scholar]
  16. Keller R. K., Swank G. D. Tunicamycin does not block ovalbumin secretion in the oviduct. Biochem Biophys Res Commun. 1978 Nov 29;85(2):762–768. doi: 10.1016/0006-291x(78)91226-3. [DOI] [PubMed] [Google Scholar]
  17. Kilker R. D., Jr, Saunier B., Tkacz J. S., Herscovics A. Partial purification from Saccharomyces cerevisiae of a soluble glucosidase which removes the terminal glucose from the oligosaccharide Glc3Man9GlcNAc2. J Biol Chem. 1981 May 25;256(10):5299–5603. [PubMed] [Google Scholar]
  18. Kobata A. Use of endo- and exoglycosidases for structural studies of glycoconjugates. Anal Biochem. 1979 Nov 15;100(1):1–14. doi: 10.1016/0003-2697(79)90102-7. [DOI] [PubMed] [Google Scholar]
  19. Kornfeld R., Kornfeld S. Comparative aspects of glycoprotein structure. Annu Rev Biochem. 1976;45:217–237. doi: 10.1146/annurev.bi.45.070176.001245. [DOI] [PubMed] [Google Scholar]
  20. Leavitt R., Schlesinger S., Kornfeld S. Impaired intracellular migration and altered solubility of nonglycosylated glycoproteins of vesicular stomatitis virus and Sindbis virus. J Biol Chem. 1977 Dec 25;252(24):9018–9023. [PubMed] [Google Scholar]
  21. Lodish H. F., Kong N. Glucose removal from N-linked oligosaccharides is required for efficient maturation of certain secretory glycoproteins from the rough endoplasmic reticulum to the Golgi complex. J Cell Biol. 1984 May;98(5):1720–1729. doi: 10.1083/jcb.98.5.1720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mega T., Ikenaka T., Matsushima Y. Studies on N-acetyl- -D-glucosaminidase of Aspergillus oryzae. II. Substrate specificity of the enzyme. J Biochem. 1972 Jan;71(1):107–114. doi: 10.1093/oxfordjournals.jbchem.a129731. [DOI] [PubMed] [Google Scholar]
  23. Michael J. M., Kornfeld S. Partial purification and characterization of the glucosidases involved in the processing of asparagine-linked oligosaccharides. Arch Biochem Biophys. 1980 Jan;199(1):249–258. doi: 10.1016/0003-9861(80)90278-7. [DOI] [PubMed] [Google Scholar]
  24. Mizrahi A., O'Malley J. A., Carter W. A., Takatsuki A., Tamura G., Sulkowski E. Glycosylation of interferons. Effects of tunicamycin on human immune interferon. J Biol Chem. 1978 Nov 10;253(21):7612–7615. [PubMed] [Google Scholar]
  25. Olden K., Pratt R. M., Yamada K. M. Role of carbohydrates in protein secretion and turnover: effects of tunicamycin on the major cell surface glycoprotein of chick embryo fibroblasts. Cell. 1978 Mar;13(3):461–473. doi: 10.1016/0092-8674(78)90320-3. [DOI] [PubMed] [Google Scholar]
  26. Pan Y. T., Hori H., Saul R., Sanford B. A., Molyneux R. J., Elbein A. D. Castanospermine inhibits the processing of the oligosaccharide portion of the influenza viral hemagglutinin. Biochemistry. 1983 Aug 2;22(16):3975–3984. doi: 10.1021/bi00285a038. [DOI] [PubMed] [Google Scholar]
  27. Rudick M. J., Elbein A. D. Glycoprotein enzymes secreted by Aspergillus fumigatus. Purification and properties of beta-glucosidase. J Biol Chem. 1973 Sep 25;248(18):6506–6513. [PubMed] [Google Scholar]
  28. Saul R., Chambers J. P., Molyneux R. J., Elbein A. D. Castanospermine, a tetrahydroxylated alkaloid that inhibits beta-glucosidase and beta-glucocerebrosidase. Arch Biochem Biophys. 1983 Mar;221(2):593–597. doi: 10.1016/0003-9861(83)90181-9. [DOI] [PubMed] [Google Scholar]
  29. Schachter H., Narasimhan S., Gleeson P., Vella G. Control of branching during the biosynthesis of asparagine-linked oligosaccharides. Can J Biochem Cell Biol. 1983 Sep;61(9):1049–1066. doi: 10.1139/o83-134. [DOI] [PubMed] [Google Scholar]
  30. Speake B. K., Malley D. J., Hemming F. W. The effect of tunicamycin on secreted glycosidases of Aspergillus niger. Arch Biochem Biophys. 1981 Aug;210(1):110–117. doi: 10.1016/0003-9861(81)90170-3. [DOI] [PubMed] [Google Scholar]
  31. Spiro R. G., Spiro M. J., Bhoyroo V. D. Processing of carbohydrate units of glycoproteins. Characterization of a thyroid glucosidase. J Biol Chem. 1979 Aug 25;254(16):7659–7667. [PubMed] [Google Scholar]
  32. Srinivas R. V., Melsen L. R., Compans R. W. Effects of monensin on morphogenesis and infectivity of Friend murine leukemia virus. J Virol. 1982 Jun;42(3):1067–1075. doi: 10.1128/jvi.42.3.1067-1075.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Struck D. K., Siuta P. B., Lane M. D., Lennarz W. J. Effect of tunicamycin on the secretion of serum proteins by primary cultures of rat and chick hepatocytes. Studies on transferrin, very low density lipoprotein, and serum albumin. J Biol Chem. 1978 Aug 10;253(15):5332–5337. [PubMed] [Google Scholar]
  34. Swaminathan N., Matta K. L., Donoso L. A., Bahl O. P. Glycosidases of Aspergillus niger. 3. Purification and characterization of 1,2- -mannosidase. J Biol Chem. 1972 Mar 25;247(6):1775–1779. [PubMed] [Google Scholar]
  35. Tarentino A. L., Maley F. Purification and properties of an endo-beta-N-acetylglucosaminidase from Streptomyces griseus. J Biol Chem. 1974 Feb 10;249(3):811–817. [PubMed] [Google Scholar]
  36. Tartakoff A. M., Vassalli P. Plasma cell immunoglobulin secretion: arrest is accompanied by alterations of the golgi complex. J Exp Med. 1977 Nov 1;146(5):1332–1345. doi: 10.1084/jem.146.5.1332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tietze C., Schlesinger P., Stahl P. Chloroquine and ammonium ion inhibit receptor-mediated endocytosis of mannose-glycoconjugates by macrophages: apparent inhibition of receptor recycling. Biochem Biophys Res Commun. 1980 Mar 13;93(1):1–8. doi: 10.1016/s0006-291x(80)80237-3. [DOI] [PubMed] [Google Scholar]
  38. Uchida N., Smilowitz H., Tanzer M. L. Monovalent ionophores inhibit secretion of procollagen and fibronectin from cultured human fibroblasts. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1868–1872. doi: 10.1073/pnas.76.4.1868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Ugalde R. A., Staneloni R. J., Leloir L. F. Microsomal glucosidases of rat liver. Partial purification and inhibition by disaccharides. Eur J Biochem. 1980 Dec;113(1):97–103. doi: 10.1111/j.1432-1033.1980.tb06144.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES