Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1984 Oct;160(1):288–293. doi: 10.1128/jb.160.1.288-293.1984

Mutagenesis of Neisseria gonorrhoeae: absence of error-prone repair.

L A Campbell, R E Yasbin
PMCID: PMC214714  PMID: 6434520

Abstract

The lethal and mutagenic effects of various mutagens on Neisseria gonorrhoeae were investigated. Lethality studies demonstrated that N. gonorrhoeae was relatively sensitive to ethyl methanesulfonate, UV light, and methyl methanesulfonate. Although N. gonorrhoeae was readily mutated by ethyl methanesulfonate and N-methyl-N'-nitro-N-nitrosoguanidine for the three genetic markers assayed, no increase in the mutation frequency was observed for any of the selective markers after UV irradiation or methyl methanesulfonate treatment. These results suggest that N. gonorrhoeae lacks an error-prone repair mechanism.

Full text

PDF
288

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Campbell L. A., Yasbin R. E. A DNA excision repair system for Neisseria gonorrhoeae. Mol Gen Genet. 1984;193(3):561–563. doi: 10.1007/BF00382101. [DOI] [PubMed] [Google Scholar]
  2. Campbell L. A., Yasbin R. E. Deoxyribonucleic acid repair capacities of Neisseria gonorrhoeae: absence of photoreactivation. J Bacteriol. 1979 Dec;140(3):1109–1111. doi: 10.1128/jb.140.3.1109-1111.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Doisy E. A. An autobiography. Annu Rev Biochem. 1976;45:1–9. doi: 10.1146/annurev.bi.45.070176.000245. [DOI] [PubMed] [Google Scholar]
  4. Gasc A. M., Sicard N., Claverys J. P., Sicard A. M. Lack of SOS repair in Streptococcus pneumoniae. Mutat Res. 1980 Apr;70(2):157–165. doi: 10.1016/0027-5107(80)90155-4. [DOI] [PubMed] [Google Scholar]
  5. Gichner T., Velemínský J. Genetic effects of N-methyl-N'-nitro-N-nitrosoguanidine and its homologs. Mutat Res. 1982 Sep;99(2):129–242. doi: 10.1016/0165-1110(82)90057-4. [DOI] [PubMed] [Google Scholar]
  6. Hofemeister J., Köhler H., Filippov V. D. DNA repair in Proteus mirabilis. VI. Plasmid (R46-) mediated recovery and UV mutagenesis. Mol Gen Genet. 1979 Oct 3;176(2):265–273. [PubMed] [Google Scholar]
  7. Ishii Y., Kondo S. Comparative analysis of deletion and base-change mutabilities of Escherichia coli B strains differing in DNA repair capacity (wild-type, uvrA-, polA-, recA-) by various mutagens. Mutat Res. 1975 Jan;27(1):27–44. doi: 10.1016/0027-5107(75)90271-7. [DOI] [PubMed] [Google Scholar]
  8. KELLOGG D. S., Jr, PEACOCK W. L., Jr, DEACON W. E., BROWN L., PIRKLE D. I. NEISSERIA GONORRHOEAE. I. VIRULENCE GENETICALLY LINKED TO CLONAL VARIATION. J Bacteriol. 1963 Jun;85:1274–1279. doi: 10.1128/jb.85.6.1274-1279.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KELNER A. CORRELATION BETWEEN GENETIC TRANSFORMABILITY AND NON-PHOTOREACTIVABILITY IN BACILLUS SUBTILIS. J Bacteriol. 1964 Jun;87:1295–1303. doi: 10.1128/jb.87.6.1295-1303.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kato T., Shinoura Y. Isolation and characterization of mutants of Escherichia coli deficient in induction of mutations by ultraviolet light. Mol Gen Genet. 1977 Nov 14;156(2):121–131. doi: 10.1007/BF00283484. [DOI] [PubMed] [Google Scholar]
  11. Kimball R. F., Boling M. E., Perdue S. W. Evidence that UV-inducible error-prone repair is absent in Haemophilus influenzae Rd, with a discussion of the relation to error-prone repair of alkylating-agent damage. Mutat Res. 1977 Aug;44(2):183–196. doi: 10.1016/0027-5107(77)90076-8. [DOI] [PubMed] [Google Scholar]
  12. La Scolea L. J., Jr, Young F. E. Development of a defined minimal medium for the growth of Neisseria gonorrhoeae. Appl Microbiol. 1974 Jul;28(1):70–76. doi: 10.1128/am.28.1.70-76.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lambden P. R., Heckels J. E., Watt P. J. Effect of anti-pilus antibodies on survival of gonococci within guinea pig subcutaneous chambers. Infect Immun. 1982 Oct;38(1):27–30. doi: 10.1128/iai.38.1.27-30.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Miller J. H. Mutational specificity in bacteria. Annu Rev Genet. 1983;17:215–238. doi: 10.1146/annurev.ge.17.120183.001243. [DOI] [PubMed] [Google Scholar]
  15. Radman M. SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis. Basic Life Sci. 1975;5A:355–367. doi: 10.1007/978-1-4684-2895-7_48. [DOI] [PubMed] [Google Scholar]
  16. Radman M., Villani G., Boiteux S., Kinsella A. R., Glickman B. W., Spadari S. Replicational fidelity: mechanisms of mutation avoidance and mutation fixation. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 2):937–946. doi: 10.1101/sqb.1979.043.01.103. [DOI] [PubMed] [Google Scholar]
  17. Rudner R. Mutagenesis during transformation of Bacillus subtilis. II. An increase in chemically-induced mutations during competency. Mutat Res. 1981 Oct;83(3):339–347. doi: 10.1016/0027-5107(81)90016-6. [DOI] [PubMed] [Google Scholar]
  18. Salit I. E., Gotschlich E. C. Gonococcal color and opacity variants: virulence for chicken embryos. Infect Immun. 1978 Nov;22(2):359–364. doi: 10.1128/iai.22.2.359-364.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sicard N. Possible correlation between transformability and deficiency in error-prone repair. J Bacteriol. 1983 May;154(2):995–997. doi: 10.1128/jb.154.2.995-997.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sweet D. M., Moseley B. E. Accurate repair of ultraviolet-induced damage in Micrococcus radiodurans. Mutat Res. 1974 Jun;23(3):311–318. doi: 10.1016/0027-5107(74)90104-3. [DOI] [PubMed] [Google Scholar]
  22. Timson J. Caffeine. Mutat Res. 1977;47(1):1–52. doi: 10.1016/0165-1110(77)90016-1. [DOI] [PubMed] [Google Scholar]
  23. Todd P. A., Brouwer J., Glickman B. W. Influence of DNA-repair deficiencies on MMS- and EMS-induced mutagenesis in Escherichia coli K-12. Mutat Res. 1981 Jul;82(2):239–250. doi: 10.1016/0027-5107(81)90153-6. [DOI] [PubMed] [Google Scholar]
  24. Walker G. C., Dobson P. P. Mutagenesis and repair deficiencies of Escherichia coli umuC mutants are suppressed by the plasmid pKM101. Mol Gen Genet. 1979 Apr 17;172(1):17–24. doi: 10.1007/BF00276210. [DOI] [PubMed] [Google Scholar]
  25. Walker G. C. Inducible reactivation and mutagenesis of UV-irradiated bacteriophage P22 in Salmonella typhimurium LT2 containing the plasmid pKM101. J Bacteriol. 1978 Aug;135(2):415–421. doi: 10.1128/jb.135.2.415-421.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Witkin E. M. Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol Rev. 1976 Dec;40(4):869–907. doi: 10.1128/br.40.4.869-907.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yasbin R. E. DNA repair in Bacillus subtilis. II. Activation of the inducible system in competent bacteria. Mol Gen Genet. 1977 Jun 8;153(2):219–225. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES