Abstract
Pseudomonas sp. M, isolated from soil by elective culture on R,S-mevalonate as the sole source of carbon, possessed an inducible transport system for mevalonate. This high-affinity system had a pH optimum of 7.0, a temperature optimum of 30 degrees C, a Km for R,S-mevalonate of 88 microM, and a V max of 26 nmol of mevalonate transported per min/mg of cells (dry weight). Transport was energy dependent since azide, cyanide, or m-chlorophenylhydrazone caused complete cessation of transport activity. Transport of mevalonate was highly substrate specific. Of the 16 structural analogs of mevalonate tested, only acetoacetate, mevinolin, and mevaldehyde significantly inhibited transport. Growth of cells on mevalonate induced transport activity by 40- to 65-fold over that observed in cells grown on alternate carbon sources. A biphasic pattern for cell growth, as well as for induction of mevalonate transport activity, was observed when mevalonate was added to a culture actively growing on glucose. The induction of transport activity under these conditions began within 30 min after the addition of mevalonate and reached 60% of maximal activity during phase I. A further increase in mevalonate transport activity occurred during phase II of growth. Glucose was the preferred carbon source for growth during phase I, whereas mevalonate was preferred during phase II. Only one isomer of the R,S-mevalonate mixture appeared to be utilized, since growth ceased after 45 to 50% of the total mevalonate was depleted from the medium. However, nearly 30% of the preferred mevalonate isomer was depleted from the medium during phase I without significant metabolism to CO2. These results suggest that mevalonate or a mevalonate catabolite may accumulate in cells of Pseudomonas sp. M during phase I and that glucose metabolism may inhibit or repress the expression of enzymes further along the mevalonate catabolic pathway.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alberts A. W., Chen J., Kuron G., Hunt V., Huff J., Hoffman C., Rothrock J., Lopez M., Joshua H., Harris E. Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3957–3961. doi: 10.1073/pnas.77.7.3957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bensch W. R., Rodwell V. W. Purification and properties of 3-hydroxy-3-methylglutaryl coenzyme A reductase from Pseudomonas. J Biol Chem. 1970 Aug 10;245(15):3755–3762. [PubMed] [Google Scholar]
- CRESSON E. L., FOLKERS K., HOFFMAN C. H., MACRAE G. D., SKEGGS H. R., WOLF D. E., WRIGHT L. D. Discovery of a new acetate-replacing factor. J Bacteriol. 1956 Oct;72(4):519–524. doi: 10.1128/jb.72.4.519-524.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chakrabarty A. M. Plasmids in Pseudomonas. Annu Rev Genet. 1976;10:7–30. doi: 10.1146/annurev.ge.10.120176.000255. [DOI] [PubMed] [Google Scholar]
- Endo A., Kuroda M., Tanzawa K. Competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by ML-236A and ML-236B fungal metabolites, having hypocholesterolemic activity. FEBS Lett. 1976 Dec 31;72(2):323–326. doi: 10.1016/0014-5793(76)80996-9. [DOI] [PubMed] [Google Scholar]
- Goldstein J. L., Brown M. S. The low-density lipoprotein pathway and its relation to atherosclerosis. Annu Rev Biochem. 1977;46:897–930. doi: 10.1146/annurev.bi.46.070177.004341. [DOI] [PubMed] [Google Scholar]
- Rodwell V. W., Bensch W. R. S-3-hydroxy-3-methylglutaryl-CoA reductase from pseudomonas. Methods Enzymol. 1981;71(Pt 100):480–486. doi: 10.1016/0076-6879(81)71058-9. [DOI] [PubMed] [Google Scholar]
- Rodwell V. W., Nordstrom J. L., Mitschelen J. J. Regulation of HMG-CoA reductase. Adv Lipid Res. 1976;14:1–74. doi: 10.1016/b978-0-12-024914-5.50008-5. [DOI] [PubMed] [Google Scholar]
- SIDDIQI M. A., RODWELL V. Bacterial metabolism of mevalonic acid conversion to acetoacetate. Biochem Biophys Res Commun. 1962 Jun 19;8:110–113. doi: 10.1016/0006-291x(62)90246-2. [DOI] [PubMed] [Google Scholar]
- Siddiqi M. A., Rodwell V. W. Bacterial metabolism of mevalonic acid. J Bacteriol. 1967 Jan;93(1):207–214. doi: 10.1128/jb.93.1.207-214.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takatsuji H., Nishino T., Miki I., Katsuki H. Studies on isoprenoid biosynthesis with bacterial intact cells. Biochem Biophys Res Commun. 1983 Jan 14;110(1):187–193. doi: 10.1016/0006-291x(83)91278-0. [DOI] [PubMed] [Google Scholar]
