Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1951 May 20;34(5):529–550. doi: 10.1085/jgp.34.5.529

INFLUENCE OF URETHANE AND OF HYDROSTATIC PRESSURE ON THE GROWTH OF BACTERIOPHAGES T2, T5, T6, AND T7

Ruth A C Foster 1, Frank H Johnson 1
PMCID: PMC2147259  PMID: 14832436

Abstract

In 0.5 per cent NaCl, nutrient broth at 35°C., urethane in a concentration of 0.4 M stops the reproduction of Escherichia coli, strain B. On dilution with 20 volumes of sterile medium, growth is resumed at its former rate after a short lag. In the one-step growth of T2, 15, T6, or T7, in the same medium at the same temperature, 0.4 M urethane, when added at the time of infection, had no apparent effect on adsorption and caused no decrease in titer throughout the latent period of the control, but completely prevented a rise in titer. If diluted 1:20 with sterile medium prior to a certain critical time in the latent period, however, bacteriophage was liberated at the same time, and in the same amount as in the control. The initial stage of apparent insensitivity to the drug lasts from the time of infection until the approximate critical times of 7 minutes with T7, T2, or T6, or 13 minutes with T5. Under the conditions described, the normal latent periods were 14, 23, 30, and 44 minutes for T7, T2, T6, and T5, respectively. At the critical times referred to above, there begins a stage characterized by complete sensitivity, rather than complete insensitivity, to 0.4 M urethane, in the sense that no active phage is subsequently liberated in continued presence of the drug. The length of this completely sensitive stage, as judged by addition of the drug at successive intervals during the latent period, extends from approximately 7 until 9 minutes after infection with T7, 7 until 15 minutes with T2 or T6, or 13 until 25 minutes with T5. When the urethane is added late in this stage of T2, a decrease in initial titer takes place as judged by assays made 40 minutes after infection, the maximum effect occurring when the drug is added between 14 and 15 minutes after infection. When added subsequently to the completely sensitive stage of each type, i.e. subsequently to 9 minutes after infection with T7, 15 minutes with T2 or T6, or 25 minutes with T5, liberation of the bacteriophage takes place in presence of the drug, but the yield is reduced, the amount of reduction being greater the sooner it is added. The yield increases as addition of the drug is delayed, but it is measurably reduced when added late in the rise period. Macroscopic lysis with T7 is delayed by 0.4 M urethane, when present from the time of infection. The delay is less with increased multiplicities of infection. A similar delay occurs with T6r at a multiplicity of 4. The application of hydrostatic pressures of 7,000 to 9,000 p.s.i. early in the latent period, within 5 to 8 minutes after infection, prevents a yield in each of the four phage types, and if maintained for lengthy periods of time a reduction in initial titer occurs. If released at various times shortly after the latent period, a rise in the titer occurred after a certain interval whose length was characteristic of the phage type. The yield was less the longer the release of pressure was delayed. When the pressure was first applied late in the latent period, large amounts of phage were liberated either under pressure or explosively when pressure was released to make the assays. Hydrostatic pressure at 6,000 p.s.i. had little effect on the rate or amount of macroscopic clearing with T7 in relatively high multiplicity of infection, when applied at the start of lysis, but slowed the rate and reduced the amount of clearing when applied shortly after infection.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CZEKALOWSKI J. W., DOLBY D. E. Effect of enzyme inhibitors on the genesis of phage. Nature. 1949 May 7;163(4149):719–719. doi: 10.1038/163719b0. [DOI] [PubMed] [Google Scholar]
  2. Foster R. A. An Analysis of the Action of Proflavine on Bacteriophage Growth. J Bacteriol. 1948 Dec;56(6):795–809. doi: 10.1128/jb.56.6.795-809.1948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Luria S. E., Latarjet R. Ultraviolet Irradiation of Bacteriophage During Intracellular Growth. J Bacteriol. 1947 Feb;53(2):149–163. doi: 10.1128/jb.53.2.149-163.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. MURRAY R. G. E., GILLEN D. H., HEAGY F. C. Cytological changes in Escherichia coli produced by infection with phage T2. J Bacteriol. 1950 May;59(5):603–615. doi: 10.1128/jb.59.5.603-615.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES