Abstract
Measurements have been made on the permeability of the human erythrocyte to Na and K in vitro, using radioactive tracers to observe the system in the steady state. The average inward K flux is 1.67 m.eq./liter cells hour, and the apparent activation energy is 12,300 ± 1300 calories/mol. The inward K flux is independent of the external K concentration in the range of concentrations studied (4 to 16 m.eq. K/liter plasma). Rb appears to compete with K for transport into the cell, whereas Na and Li do not. The average inward Na flux is 3.08 ± 0.57 m.eq. Na/liter cells hour, and the apparent activation energies are 20,200 ± 2700 calories/mol for inward transport, and 14,900 ± 3,400 calories/mol for outward transport. The inward Na flux is dependent on the external Na concentration, but not in a linear fashion. Li appears to compete with Na for inward transport, whereas K and Rb do not. An approximate maximum estimate shows that the energy required for cation transport is only 8.8 calories/mol liter cells hour of the 110 calories/mol liter cells hour available from the consumption of glucose. A working hypothesis for the transport of Na and K is presented.
Full Text
The Full Text of this article is available as a PDF (2.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Davson H. Studies on the permeability of erythrocytes: The effect of reducing the salt content of the medium surrounding the cell. Biochem J. 1939 Mar;33(3):389–401. doi: 10.1042/bj0330389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dirken M. N., Mook H. W. The rate of gas exchange between blood cells and serum. J Physiol. 1931 Dec 17;73(4):349–360. doi: 10.1113/jphysiol.1931.sp002816. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FLYNN F., MAIZELS M. Cation control in human erythrocytes. J Physiol. 1949 Dec;110(3-4):301–318. doi: 10.1113/jphysiol.1949.sp004440. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOURLEY D. R. H., GEMMILL C. L. The effect of temperature upon the uptake of radioactive phosphate by human erythrocytes in vitro. J Cell Physiol. 1950 Jun;35(3):341–352. doi: 10.1002/jcp.1030350305. [DOI] [PubMed] [Google Scholar]
- GRAY S. J., STERLING K. The tagging of red cells and plasma proteins with radioactive chromium. J Clin Invest. 1950 Dec;29(12):1604–1613. doi: 10.1172/JCI102403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HARRIS E. J., MAIZELS M. The permeability of human erythrocytes to sodium. J Physiol. 1951 May;113(4):506–524. doi: 10.1113/jphysiol.1951.sp004591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MUELLER C. B., HASTINGS A. B. The rate of transfer of phosphorus across the red blood cell membrane. J Biol Chem. 1951 Apr;189(2):869–879. [PubMed] [Google Scholar]
- McKee R. W., Ormsbee R. A., Anfinsen C. B., Geiman Q. M., Ball E. G. STUDIES ON MALARIAL PARASITES : VI. THE CHEMISTRY AND METABOLISM OF NORMAL AND PARASITIZED (P. KNOWLESI) MONKEY BLOOD. J Exp Med. 1946 Nov 30;84(6):569–582. doi: 10.1084/jem.84.6.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OSTERHOUT W. J. V. Some bioelectrical problems. Proc Natl Acad Sci U S A. 1949 Oct;35(10):548–558. doi: 10.1073/pnas.35.10.548. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OSTERHOUT W. J. V. The mechanism of accumulation. Biol Bull. 1950 Oct;99(2):308–309. doi: 10.1086/BBLv99n2p308. [DOI] [PubMed] [Google Scholar]
- PONDER E. Accumulation of potassium by human red cells. J Gen Physiol. 1950 Jul 20;33(6):745–757. doi: 10.1085/jgp.33.6.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PONDER E. Anomalous features of the loss of K from human red cells; results of extended observations. J Gen Physiol. 1951 Jan;34(3):359–372. doi: 10.1085/jgp.34.3.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parpart A. K., Ballentine R. HEMATOCRIT DETERMINATION OF RELATIVE CELL VOLUME. Science. 1943 Dec 17;98(2555):545–545. doi: 10.1126/science.98.2555.545. [DOI] [PubMed] [Google Scholar]
- RAKER J. W., TAYLOR I. M., WELLER J. M., HASTINGS A. B. Rate of potassium exchange of the human erythrocyte. J Gen Physiol. 1950 Jul 20;33(6):691–702. doi: 10.1085/jgp.33.6.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson C. V. Windowless, Flow Type, Proportional Counter for Counting C14. Science. 1950 Aug 18;112(2903):198–199. doi: 10.1126/science.112.2903.198. [DOI] [PubMed] [Google Scholar]
- SHEPPARD C. W., BEYL G. E. Cation exchange in mammalian erythrocytes. III. The prolytic effect of x-rays on human cells. J Gen Physiol. 1951 May;34(5):691–704. doi: 10.1085/jgp.34.5.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHEPPARD C. W., MARTIN W. R., BEYL G. Cation exchange between cells and plasma of mammalian blood. II. Sodium and potassium exchange in the sheep, dog, cow, and man and the effect of varying the plasma potassium concentration. J Gen Physiol. 1951 Mar 20;34(4):411–429. doi: 10.1085/jgp.34.4.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHEPPARD C. W., MARTIN W. R. Cation exchange between cells and plasma of mammalian blood; methods and application to potassium exchange in human blood. J Gen Physiol. 1950 Jul 20;33(6):703–722. doi: 10.1085/jgp.33.6.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TAYLOR I. M., WELLER J. M. Studies on the permeability of human erythrocytes to potassium. Biol Bull. 1950 Oct;99(2):311–311. doi: 10.1086/BBLv99n2p308. [DOI] [PubMed] [Google Scholar]
- USSING H. H. Transport of ions across cellular membranes. Physiol Rev. 1949 Apr;29(2):127–155. doi: 10.1152/physrev.1949.29.2.127. [DOI] [PubMed] [Google Scholar]