Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1954 Jul 20;37(6):795–812. doi: 10.1085/jgp.37.6.795

ON THE ROLE OF THE SPINAL AFFERENT NEURON AS A GENERATOR OF EXTRACELLULAR CURRENT

Donald O Rudin 1, George Eisenman 1
PMCID: PMC2147467  PMID: 13174784

Abstract

The prediction that a system of currents flows between the dorsal column and the dorsal root due to differences in their after-potentials was found to be consistent with the experimental findings. The form, magnitude, duration, and sign of the electrotonic component DRα fulfill the requirements of the postulated system. A contribution of tract after-potentials to the evoked potential of intramedullary structures is indicated. It is a conclusion of this and previous studies that profound changes occur in certain membrane properties of myelinated primary afferent axons as they penetrate the central nervous system. The working concept of abrupt intraaxonal junctional regions is therefore justifiable.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adrian E. D. Afferent discharges to the cerebral cortex from peripheral sense organs. J Physiol. 1941 Sep 8;100(2):159–191. doi: 10.1113/jphysiol.1941.sp003932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BERNHARD C. G. The cord dorsum potentials in relation to peripheral source of afferent stimulation. Cold Spring Harb Symp Quant Biol. 1952;17:221–232. doi: 10.1101/sqb.1952.017.01.021. [DOI] [PubMed] [Google Scholar]
  3. BISHOP G. H., CLARE M. H. Sites of origin of electric potentials in striate cortex. J Neurophysiol. 1952 May;15(3):201–220. doi: 10.1152/jn.1952.15.3.201. [DOI] [PubMed] [Google Scholar]
  4. CHANG H. T. Cortical response to activity of callosal neurons. J Neurophysiol. 1953 Mar;16(2):117–131. doi: 10.1152/jn.1953.16.2.117. [DOI] [PubMed] [Google Scholar]
  5. EISENMAN G., RUDIN D. O. Further studies on the functional properties of spinal axons in vivo. J Gen Physiol. 1954 Mar;37(4):495–503. doi: 10.1085/jgp.37.4.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. EISENMAN G., RUDIN D. O. The compound of potential in a stimulated dorsal root. J Gen Physiol. 1954 Jul 20;37(6):781–793. doi: 10.1085/jgp.37.6.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HUNT W. E., GOLDRING S. Maturation of evoked response of the visual cortex in the postnatal rabbit. Electroencephalogr Clin Neurophysiol. 1951 Nov;3(4):465–471. doi: 10.1016/0013-4694(51)90034-x. [DOI] [PubMed] [Google Scholar]
  8. LLOYD D. P. C. Electrotonus in dorsal nerve roots. Cold Spring Harb Symp Quant Biol. 1952;17:203–219. doi: 10.1101/sqb.1952.017.01.020. [DOI] [PubMed] [Google Scholar]
  9. LLOYD D. P. C., McINTYRE A. K. On the origins of dorsal root potentials. J Gen Physiol. 1949 Mar 20;32(4):409–443. doi: 10.1085/jgp.32.4.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LORENTE R DE NO R. On the existence of a gradient of sensitivity to the lack of sodium in the spinal roots of the bullfrog. J Gen Physiol. 1951 Nov;35(2):183–201. doi: 10.1085/jgp.35.2.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. RUDIN D. O., EISENMAN G. After-potential of spinal axons in vivo. J Gen Physiol. 1953 May;36(5):643–657. doi: 10.1085/jgp.36.5.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. RUDIN D. O., EISENMAN G. The action potential of spinal axons in vitro. J Gen Physiol. 1954 Mar;37(4):505–538. doi: 10.1085/jgp.37.4.505. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES