Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1954 Sep 20;38(1):117–131. doi: 10.1085/jgp.38.1.117

RELATION OF FUNCTION TO DIAMETER IN AFFERENT FIBERS OF MUSCLE NERVES

Carlton C Hunt 1
PMCID: PMC2147477  PMID: 13192320

Abstract

1. A method of isolation of individual afferent fibers from muscle has yielded a representative sample of the fibers which comprise groups 1 (12 to 20 µ) and II (4 to 12 µ) of the afferent fiber diameter distribution of muscle nerves in cat. 2. Afferent fibers from muscle stretch receptors account for groups I and II of the afferent diameter spectrum of muscle nerves to soleus and medial gastrocnemius. Fibers from tendon organs are largely confined to the diameter range above 12 µ. This fiber group, which has a simple one-peak diameter distribution, is termed group IB. Fibers from muscle spindles show a bimodal diameter distribution and account for the remainder of fibers in the 12 to 20 µ group (termed IA) and substantially all of group II (4 to 12 µ). 3. No significant difference has been found in the receptor characteristics of the large (group IA) and intermediate sized (group II) spindle afferent fibers other than a slightly higher threshold of the latter to steady external stretch.

Full Text

The Full Text of this article is available as a PDF (844.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. HUNT C. C., KUFFLER S. W. Further study of efferent small-nerve fibers to mammalian muscle spindles; multiple spindle innervation and activity during contraction. J Physiol. 1951 Apr;113(2-3):283–297. doi: 10.1113/jphysiol.1951.sp004572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. HUNT C. C., KUFFLER S. W. Stretch receptor discharges during muscle contraction. J Physiol. 1951 Apr;113(2-3):298–315. doi: 10.1113/jphysiol.1951.sp004573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. KATZ B. Depolarization of sensory terminals and the initiation of impulses in the muscle spindle. J Physiol. 1950 Oct 16;111(3-4):261–282. doi: 10.1113/jphysiol.1950.sp004479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. KUFFLER S. W., HUNT C. C., QUILLIAM J. P. Function of medullated small-nerve fibers in mammalian ventral roots; efferent muscle spindle innervation. J Neurophysiol. 1951 Jan;14(1):29–54. doi: 10.1152/jn.1951.14.1.29. [DOI] [PubMed] [Google Scholar]
  5. Matthews B. H. Nerve endings in mammalian muscle. J Physiol. 1933 Apr 13;78(1):1–53. doi: 10.1113/jphysiol.1933.sp002984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ruffini A. On the Minute Anatomy of the Neuromuscular Spindles of the Cat, and on their Physiological Significance. J Physiol. 1898 Jul 26;23(3):190–208.3. doi: 10.1113/jphysiol.1898.sp000723. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES