Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1984 Nov;160(2):541–545. doi: 10.1128/jb.160.2.541-545.1984

Genetic analysis of mutants of Aspergillus nidulans blocked at an early stage of sporulation.

N Z Butnick, L N Yager, M B Kurtz, S P Champe
PMCID: PMC214768  PMID: 6094473

Abstract

Three mutants of Aspergillus nidulans, selected to have a block at an early stage of conidiation (asexual sporulation), exhibit similar pleiotropic phenotypes. Each of these mutants, termed preinduction mutants, also are blocked in sexual sporulation and secrete a set of phenolic metabolites at level much higher than wild type or mutants blocked at later stages of conidiation. Backcrosses of these mutants to wild type showed that the three phenotypes always cosegregated. Diploids containing the mutant alleles in all pairwise combinations were normal for all phenotypes, showing that the three mutations are nonallelic. This conclusion was confirmed by the finding that the mutations map at three unlinked or distantly linked loci. Ten revertants of the two least leaky preinduction mutants, selected for ability to conidiate, were found in each case to arise by a second-site suppressor mutation. All of the revertants still showed accumulation of some of the phenolic metabolites but differed from each other in certain components. Three of the revertants retained the block in sexual sporulation. In these cases the suppressor has thus uncoupled the block in asexual sporulation from the block in sexual sporulation. These results are understandable in terms of a model in which preinduction mutations and their suppressors affect steps in a single metabolic pathway whose intermediates include an effector specific for asexual sporulation and a second effector specific for sexual sporulation.

Full text

PDF
541

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelrod D. E., Gealt M., Pastushok M. Gene control of developmental competence in Aspergillus nidulans. Dev Biol. 1973 Sep;34(1):9–15. doi: 10.1016/0012-1606(73)90335-7. [DOI] [PubMed] [Google Scholar]
  2. Butnick N. Z., Yager L. N., Kurtz M. B., Champe S. P. Genetic analysis of mutants of Aspergillus nidulans blocked at an early stage of sporulation. J Bacteriol. 1984 Nov;160(2):541–545. doi: 10.1128/jb.160.2.541-545.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clutterbuck A. J. A mutational analysis of conidial development in Aspergillus nidulans. Genetics. 1969 Oct;63(2):317–327. doi: 10.1093/genetics/63.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clutterbuck A. J. Gene symbols in Aspergillus nidulans. Genet Res. 1973 Jun;21(3):291–296. doi: 10.1017/s0016672300013483. [DOI] [PubMed] [Google Scholar]
  5. Cove D. J. The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta. 1966 Jan 11;113(1):51–56. doi: 10.1016/s0926-6593(66)80120-0. [DOI] [PubMed] [Google Scholar]
  6. Hermann T. E., Kurtz M. B., Champe S. P. Laccase localized in hulle cells and cleistothecial primordia of Aspergillus nidulans. J Bacteriol. 1983 May;154(2):955–964. doi: 10.1128/jb.154.2.955-964.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kurtz M. B., Champe S. P. Dominant spore color mutants of Aspergillus nidulans defective in germination and sexual development. J Bacteriol. 1981 Nov;148(2):629–638. doi: 10.1128/jb.148.2.629-638.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Käfer E. Origins of translocations in Aspergillus nidulans. Genetics. 1965 Jul;52(1):217–232. doi: 10.1093/genetics/52.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Martinelli S. D., Clutterbuck A. J. A quantitative survey of conidiation mutants in Aspergillus nidulans. J Gen Microbiol. 1971 Dec;69(2):261–268. doi: 10.1099/00221287-69-2-261. [DOI] [PubMed] [Google Scholar]
  10. Orr W. C., Timberlake W. E. Clustering of spore-specific genes in Aspergillus nidulans. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5976–5980. doi: 10.1073/pnas.79.19.5976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. PONTECORVO G., ROPER J. A., HEMMONS L. M., MACDONALD K. D., BUFTON A. W. J. The genetics of Aspergillus nidulans. Adv Genet. 1953;5:141–238. doi: 10.1016/s0065-2660(08)60408-3. [DOI] [PubMed] [Google Scholar]
  12. Pastushok M., Axelrod D. E. Effect of glucose, ammonium and media maintenance on the time of conidiophore initiation by surface colonies of Aspergillus nidulans. J Gen Microbiol. 1976 May;94(1):221–224. doi: 10.1099/00221287-94-1-221. [DOI] [PubMed] [Google Scholar]
  13. Piret J. M., Demain A. L. Sporulation and spore properties of Bacillus brevis and its gramicidin S-negative mutant. J Gen Microbiol. 1983 May;129(5):1309–1316. doi: 10.1099/00221287-129-5-1309. [DOI] [PubMed] [Google Scholar]
  14. Sekiguchi J., Gaucher G. M. Conidiogenesis and secondary metabolism in Penicillium urticae. Appl Environ Microbiol. 1977 Jan;33(1):147–158. doi: 10.1128/aem.33.1.147-158.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Timberlake W. E. Developmental gene regulation in Aspergillus nidulans. Dev Biol. 1980 Aug;78(2):497–510. doi: 10.1016/0012-1606(80)90349-8. [DOI] [PubMed] [Google Scholar]
  16. Yager L. N., Kurtz M. B., Champe S. P. Temperature-shift analysis of conidial development in Aspergillus nidulans. Dev Biol. 1982 Sep;93(1):92–103. doi: 10.1016/0012-1606(82)90242-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES