Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1984 Nov;160(2):792–793. doi: 10.1128/jb.160.2.792-793.1984

Effect of culture pH on the D-alanine ester content of lipoteichoic acid in Staphylococcus aureus.

A E MacArthur, A R Archibald
PMCID: PMC214808  PMID: 6501221

Abstract

The lipoteichoic acid in Staphylococcus aureus growing at high pH values contained very little alanine ester, showing that high overall levels of substitution were not essential for growth. The low alanine content could have resulted from a progressive loss due to base-catalyzed hydrolysis of the labile ester linkages.

Full text

PDF
792

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Archibald A. R., Baddiley J., Heptinstall S. The alanine ester content and magnesium binding capacity of walls of Staphylococcus aureus H grown at different pH values. Biochim Biophys Acta. 1973 Feb 16;291(3):629–634. doi: 10.1016/0005-2736(73)90468-9. [DOI] [PubMed] [Google Scholar]
  2. Brautigan V. M., Childs W. C., 3rd, Neuhaus F. C. Biosynthesis of D-alanyl-lipoteichoic acid in Lactobacillus casei: D-alanyl-lipophilic compounds as intermediates. J Bacteriol. 1981 Apr;146(1):239–250. doi: 10.1128/jb.146.1.239-250.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dobson B. C., Archibald A. R. Effect of specific growth limitations on cell wall composition of Staphylococcus aureus H. Arch Microbiol. 1978 Dec 20;119(3):295–301. doi: 10.1007/BF00405409. [DOI] [PubMed] [Google Scholar]
  4. Fischer W., Koch H. U., Rösel P., Fiedler F. Alanine ester-containing native lipoteichoic acids do not act as lipoteichoic acid carrier. Isolation, structural and functional characterization. J Biol Chem. 1980 May 25;255(10):4557–4562. [PubMed] [Google Scholar]
  5. Fischer W., Rösel P., Koch H. U. Effect of alanine ester substitution and other structural features of lipoteichoic acids on their inhibitory activity against autolysins of Staphylococcus aureus. J Bacteriol. 1981 May;146(2):467–475. doi: 10.1128/jb.146.2.467-475.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fischer W., Rösel P. The alanine ester substitution of lipoteichoic acid (LTA) in Staphylococcus aureus. FEBS Lett. 1980 Oct 6;119(2):224–226. doi: 10.1016/0014-5793(80)80257-2. [DOI] [PubMed] [Google Scholar]
  7. Heptinstall S., Archibald A. R., Baddiley J. Teichoic acids and membrane function in bacteria. Nature. 1970 Feb 7;225(5232):519–521. doi: 10.1038/225519a0. [DOI] [PubMed] [Google Scholar]
  8. McArthur H. A., Reynolds P. E. Purification and properties of the D-alanyl-D-alanine carboxypeptidase of Bacillus coagulans NCIB 9365. Biochim Biophys Acta. 1980 Mar 14;612(1):107–118. doi: 10.1016/0005-2744(80)90283-1. [DOI] [PubMed] [Google Scholar]
  9. Tomasz A. The mechanism of the irreversible antimicrobial effects of penicillins: how the beta-lactam antibiotics kill and lyse bacteria. Annu Rev Microbiol. 1979;33:113–137. doi: 10.1146/annurev.mi.33.100179.000553. [DOI] [PubMed] [Google Scholar]
  10. Venglarcik J. S., 3rd, Blair L. L., Dunkle L. M. pH-dependent oxacillin tolerance of Staphylococcus aureus. Antimicrob Agents Chemother. 1983 Feb;23(2):232–235. doi: 10.1128/aac.23.2.232. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES