Abstract
An extracellular nuclease-deficient, antibiotic-sensitive, and restrictionless mutant was isolated from the wild-type strain of Serratia marcescens Sr41 by four rounds of mutagenesis. The mutant was transformed efficiently with plasmid DNAs prepared from Escherichia coli and S. marcescens, and was used as a host for the cloning of the aspartase gene (aspA+) of S. marcescens. Cells carrying the cloned aspA+ gene on a multicopy plasmid produced ca. 39-fold more aspartase than did control cells, and the level of enzyme overproduction was in proportion to the copy number of the aspA+ recombinant plasmid. Aspartase was identified as a polypeptide of molecular weight 52,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W., Crosa J. H., Falkow S. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene. 1977;2(2):95–113. [PubMed] [Google Scholar]
- Chang A. C., Cohen S. N. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol. 1978 Jun;134(3):1141–1156. doi: 10.1128/jb.134.3.1141-1156.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper S., Helmstetter C. E. Chromosome replication and the division cycle of Escherichia coli B/r. J Mol Biol. 1968 Feb 14;31(3):519–540. doi: 10.1016/0022-2836(68)90425-7. [DOI] [PubMed] [Google Scholar]
- Dagert M., Ehrlich S. D. Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene. 1979 May;6(1):23–28. doi: 10.1016/0378-1119(79)90082-9. [DOI] [PubMed] [Google Scholar]
- Kisumi M., Nakanishi N., Takagi T., Chibata I. L-Histidine production by histidase-less regulatory mutants of Serratia marcescens constructed by transduction. Appl Environ Microbiol. 1977 Nov;34(5):465–472. doi: 10.1128/aem.34.5.465-472.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kisumi M., Takagi T., Chibata I. Construction of an L-arginine-producing mutant in Serratia marcescens. Use of the wide substrate specificity of acetylornithinase. J Biochem. 1978 Oct;84(4):881–890. doi: 10.1093/oxfordjournals.jbchem.a132200. [DOI] [PubMed] [Google Scholar]
- Komatsubara S., Kisumi M., Chibata I. Transductional construction of a threonine-hyperproducing strain of Serratia marcescens: lack of feedback controls of three aspartokinases and two homoserine dehydrogenases. Appl Environ Microbiol. 1983 May;45(5):1445–1452. doi: 10.1128/aem.45.5.1445-1452.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Komatsubara S., Kisumi M., Chibata I. Transductional construction of an isoleucine-producing strain of Serratia marcescens. J Gen Microbiol. 1980 Jul;119(1):51–61. doi: 10.1099/00221287-119-1-51. [DOI] [PubMed] [Google Scholar]
- LENNOX E. S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1955 Jul;1(2):190–206. doi: 10.1016/0042-6822(55)90016-7. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Marcus M., Halpern Y. S. The metabolic pathway of glutamate in Escherichia coli K-12. Biochim Biophys Acta. 1969 Apr 1;177(2):314–320. doi: 10.1016/0304-4165(69)90141-x. [DOI] [PubMed] [Google Scholar]
- Matsumoto H., Tazaki T., Hosogaya S. A generalized transducing phage of Serratia marcescens. Jpn J Microbiol. 1973 Nov;17(6):473–479. doi: 10.1111/j.1348-0421.1973.tb00933.x. [DOI] [PubMed] [Google Scholar]
- Nestle M., Roberts W. K. An extracellular nuclease from Serratia marcescens. I. Purification and some properties of the enzyme. J Biol Chem. 1969 Oct 10;244(19):5213–5218. [PubMed] [Google Scholar]
- Projan S. J., Carleton S., Novick R. P. Determination of plasmid copy number by fluorescence densitometry. Plasmid. 1983 Mar;9(2):182–190. doi: 10.1016/0147-619x(83)90019-7. [DOI] [PubMed] [Google Scholar]
- Reid J. D., Stoufer S. D., Ogrydziak D. M. Efficient transformation of Serratia marcescens with pBR322 plasmid DNA. Gene. 1982 Jan;17(1):107–112. doi: 10.1016/0378-1119(82)90106-8. [DOI] [PubMed] [Google Scholar]
- Rothberg N. W., Swartz M. N. Extracellular Deoxyribonucleases in Members of the Family Enterobacteriaceae. J Bacteriol. 1965 Jul;90(1):294–295. doi: 10.1128/jb.90.1.294-295.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SAITO H., MIURA K. I. PREPARATION OF TRANSFORMING DEOXYRIBONUCLEIC ACID BY PHENOL TREATMENT. Biochim Biophys Acta. 1963 Aug 20;72:619–629. [PubMed] [Google Scholar]
- Sato T., Nishida Y., Tosa T., Chibata I. Immobilization of Escherichia coli cells containing aspartase activity with kappa-carrageenan. Enzymic properties and application for L-aspartic acid production. Biochim Biophys Acta. 1979 Sep 12;570(1):179–186. doi: 10.1016/0005-2744(79)90212-2. [DOI] [PubMed] [Google Scholar]
- Schablik M., Szabolcs M., Kiss A., Aradi J., Zsindely A., Szabó G. Conditions of transformation by DNA of Neurospora crassa. Acta Biol Acad Sci Hung. 1977;28(3):273–279. [PubMed] [Google Scholar]
- Timmis K., Winkler U. Isolation of covalently closed circular deoxyribonucleic acid from bacteria which produce exocellular nuclease. J Bacteriol. 1973 Jan;113(1):508–509. doi: 10.1128/jb.113.1.508-509.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]

