Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1985 Jan;161(1):133–140. doi: 10.1128/jb.161.1.133-140.1985

Independence of cyclic AMP and relA gene stimulation of glycogen synthesis in intact Escherichia coli cells.

M P Leckie, V L Tieber, S E Porter, W G Roth, D N Dietzler
PMCID: PMC214846  PMID: 2981798

Abstract

Previous studies from our laboratory established that in Escherichia coli, glycogen synthesis is regulated by both the relA gene, which mediates the stringent response, and by cyclic AMP. However, those studies raised the question of whether this dual regulatory system functions in an independent or a dependent manner. We show here that this regulation is independent, i.e., each regulatory process can express its action in the absence of the other. Triggering the stringent response by amino acid starvation increased glycogen synthesis even in mutants lacking the ability to synthesize cyclic AMP or lacking cyclic AMP receptor protein; and cyclic AMP addition stimulated glycogen synthesis in relA mutant strains. We also show that physiological concentrations of GTP inhibit ADP-glucose synthetase (glucose-1-phosphate adenylyltransferase, EC 2.7.7.27), the rate-limiting enzyme of bacterial glycogen synthesis, in vitro. Because the stringent response is known to cause an abrupt decrease in the cellular level of GTP, modulation of ADP-glucose synthetase activity by this nucleotide could account for a substantial portion of the step-up in the cellular rate of glycogen synthesis observed when the stringent response is triggered.

Full text

PDF
133

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aboud M., Pastan I. Activation of transcription by guanosine 5'-diphosphate,3'-diphosphate, transfer ribonucleic acid, and novel protein from Escherichia coli. J Biol Chem. 1975 Mar 25;250(6):2189–2195. [PubMed] [Google Scholar]
  2. Adhya S., Miller W. Modulation of the two promoters of the galactose operon of Escherichia coli. Nature. 1979 Jun 7;279(5713):492–494. doi: 10.1038/279492a0. [DOI] [PubMed] [Google Scholar]
  3. Alderman E. M., Dills S. S., Melton T., Dobrogosz W. J. Cyclic adenosine 3',5'-monophosphate regulation of the bacteriophage T6/colicin K receptor in Escherichia coli. J Bacteriol. 1979 Nov;140(2):369–376. doi: 10.1128/jb.140.2.369-376.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bagnara A. S., Finch L. R. Relationships between intracellular contents of nucleotides and 5-phosphoribosyl 1-pyrophosphate in Escherichia coli. Eur J Biochem. 1973 Jul 16;36(2):422–427. doi: 10.1111/j.1432-1033.1973.tb02927.x. [DOI] [PubMed] [Google Scholar]
  5. Bridger W. A., Paranchych W. relA Gene control of bacterial glycogen synthesis. Can J Biochem. 1978 Jun;56(6):403–406. doi: 10.1139/o78-063. [DOI] [PubMed] [Google Scholar]
  6. Cashel M. Regulation of bacterial ppGpp and pppGpp. Annu Rev Microbiol. 1975;29:301–318. doi: 10.1146/annurev.mi.29.100175.001505. [DOI] [PubMed] [Google Scholar]
  7. Dallas W. S., Tseng Y., Dobrogosz W. J. Regulation of membrane functions and fatty acid composition in Escherichia coli by cyclic AMP receptor protein. Arch Biochem Biophys. 1976 Jul;175(1):295–302. doi: 10.1016/0003-9861(76)90511-7. [DOI] [PubMed] [Google Scholar]
  8. Davis R. B., Thompson J. E., Pardue H. L. Characteristics of statistical parameters used to interpret least-squares results. Clin Chem. 1978 Apr;24(4):611–620. [PubMed] [Google Scholar]
  9. De Boer H. A., Bakker A. J., Weyer W. J., Gruber M. The role of energy-generating processes in the degradation of guanosine tetrophosphate, ppGpp, in Escherichia coli. Biochim Biophys Acta. 1976 May 19;432(3):361–368. doi: 10.1016/0005-2787(76)90146-5. [DOI] [PubMed] [Google Scholar]
  10. Dietzler D. N., Leckie M. P., Lais C. J. Rates of glycogen synthesis and the cellular levels of ATP and FDP during exponential growth and the nitrogen-limited stationary phase of Escherichia coli W4597 (K). Arch Biochem Biophys. 1973 Jun;156(2):684–693. doi: 10.1016/0003-9861(73)90321-4. [DOI] [PubMed] [Google Scholar]
  11. Dietzler D. N., Leckie M. P., Magnani J. L., Sughrue M. J., Bergstein P. E., Sternheim W. L. Contribution of cyclic adenosine 3':5'-monophosphate to the regulation of bacterial glycogen synthesis in vivo. Effect of carbon source and cyclic adenosine 3':5'-monophosphate on the quantitative relationship between the rate of glycogen synthesis and the cellular concentrations of glucose 6-phosphate and fructose 1,6-diphosphate in Escherichia coli. J Biol Chem. 1979 Sep 10;254(17):8308–8317. [PubMed] [Google Scholar]
  12. Dietzler D. N., Leckie M. P. Regulation of ADP-glucose synthetase, the rate-limiting enzyme of bacterial glycogen synthesis, by the pleiotropic nucleotides ppGpp and pppGpp. Biochem Biophys Res Commun. 1977 Aug 22;77(4):1459–1467. doi: 10.1016/s0006-291x(77)80143-5. [DOI] [PubMed] [Google Scholar]
  13. Dietzler D. N., Leckie M. P., Sternheim W. L., Taxman T. L., Ungar J. M., Porter S. E. Evidence for the regulation of bacterial glycogen synthesis by cyclic AMP. Biochem Biophys Res Commun. 1977 Aug 22;77(4):1468–1477. doi: 10.1016/s0006-291x(77)80144-7. [DOI] [PubMed] [Google Scholar]
  14. Dietzler D. N., Leckie M. P., Sternheim W. L., Ungar J. M., Crimmins D. L., Lewis J. W. Regulation of glycogen synthesis and glucose utilization in Escherichia coli during maintenance of the energy charge. Quantitative correlation of changes in the rates of glycogen synthesis and glucose utilization with simultaneous changes in the cellular levels of both glucose 6-phosphate and fructose 1,6-diphosphate. J Biol Chem. 1979 Sep 10;254(17):8276–8287. [PubMed] [Google Scholar]
  15. Epstein W., Rothman-Denes L. B., Hesse J. Adenosine 3':5'-cyclic monophosphate as mediator of catabolite repression in Escherichia coli. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2300–2304. doi: 10.1073/pnas.72.6.2300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fiil N., Friesen J. D. Isolation of "relaxed" mutants of Escherichia coli. J Bacteriol. 1968 Feb;95(2):729–731. doi: 10.1128/jb.95.2.729-731.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Freundlich M. Cyclic AMP can replace the relA-dependent requirement for derepression of acetohydroxy acid synthase in E. coli K-12. Cell. 1977 Dec;12(4):1121–1126. doi: 10.1016/0092-8674(77)90174-x. [DOI] [PubMed] [Google Scholar]
  18. Gallant J., Harada B. The control of ribonucleic acid synthesis in Escherichia coli. 3. The functional relationship between purine ribonucleoside triphosphate pool sizes and the rate of ribonucleic acid accumulation. J Biol Chem. 1969 Jun 25;244(12):3125–3132. [PubMed] [Google Scholar]
  19. Irr J. D. Control of nucleotide metabolism and ribosomal ribonucleic acid synthesis during nitrogen starvation of Escherichia coli. J Bacteriol. 1972 May;110(2):554–561. doi: 10.1128/jb.110.2.554-561.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Khan S. R., Yamazaki H. Inapparent correlation between guanosine tetraphosphate levels and RNA contents in Escherichia coli. Biochem Biophys Res Commun. 1974 Jul 10;59(1):125–132. doi: 10.1016/s0006-291x(74)80183-x. [DOI] [PubMed] [Google Scholar]
  21. LEAVITT R. I., UMBARGER H. E. Isoleucine and valine metabolism in Escherichia coli. XI. Valine inhibition of the growth of Escherichia coli strain K-12. J Bacteriol. 1962 Mar;83:624–630. doi: 10.1128/jb.83.3.624-630.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Leckie M. P., Ng R. H., Porter S. E., Compton D. R., Dietzler D. N. Regulation of bacterial glycogen synthesis. Stimulation of glycogen synthesis by endogenous and exogenous cyclic adenosine 3':5'-monophosphate in Escherichia coli and the requirement for a functional CRP gene. J Biol Chem. 1983 Mar 25;258(6):3813–3824. [PubMed] [Google Scholar]
  23. Leckie M. P., Tieber V. L., Porter S. E., Dietzler D. N. The relA gene is not required for glycogen accumulation during NH4+ starvation of Escherichia coli. Biochem Biophys Res Commun. 1980 Aug 14;95(3):924–931. doi: 10.1016/0006-291x(80)91561-2. [DOI] [PubMed] [Google Scholar]
  24. Loewen P. C. Levels of coenzyme A--glutathione mixed disulfide in Escherichia coli. Can J Biochem. 1978 Jul;56(7):753–759. doi: 10.1139/o78-113. [DOI] [PubMed] [Google Scholar]
  25. Pao C. C., Gallant J. A gene involved in the metabolic control of ppGpp synthesis. Mol Gen Genet. 1978 Jan 17;158(3):271–277. doi: 10.1007/BF00267198. [DOI] [PubMed] [Google Scholar]
  26. Primakoff P., Artz S. W. Positive control of lac operon expression in vitro by guanosine 5'-diphosphate 3'-diphosphate. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1726–1730. doi: 10.1073/pnas.76.4.1726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Primakoff P. In vivo role of the relA+ gene in regulation of the lac operon. J Bacteriol. 1981 Jan;145(1):410–416. doi: 10.1128/jb.145.1.410-416.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Taguchi M., Izui K., Katsuki H. Augmentation of glycogen synthesis under stringent control in Escherichia coli. J Biochem. 1980 Aug;88(2):379–387. doi: 10.1093/oxfordjournals.jbchem.a132983. [DOI] [PubMed] [Google Scholar]
  29. Taguchi M., Izui K., Katsuki H. Stringent control of glycolysis in Escherichia coli. Biochem Biophys Res Commun. 1978 Sep 14;84(1):195–201. doi: 10.1016/0006-291x(78)90281-4. [DOI] [PubMed] [Google Scholar]
  30. Villadsen I. S., Michelsen O. Regulation of PRPP and nucleoside tri and tetraphosphate pools in Escherichia coli under conditions of nitrogen starvation. J Bacteriol. 1977 Apr;130(1):136–143. doi: 10.1128/jb.130.1.136-143.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yoshimoto A., Oki T., Inui T. Effect of guanosine 5'-diphosphate 3'-diphosphate and related nucleoside polyphosphates on induction of tryptophanase and beta-galactosidase in permeabilized cells of Escherichia coli. Arch Microbiol. 1978 Oct 4;119(1):81–86. doi: 10.1007/BF00407932. [DOI] [PubMed] [Google Scholar]
  32. Zubay G., Gielow L., Englesberg E. Cell-free studies on the regulation of the arabinose operon. Nat New Biol. 1971 Oct 6;233(40):164–165. doi: 10.1038/newbio233164a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES