Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1985 Jan;161(1):153–157. doi: 10.1128/jb.161.1.153-157.1985

Inducible beta-oxidation pathway in Neurospora crassa.

C Kionka, W H Kunau
PMCID: PMC214849  PMID: 3155714

Abstract

An inducible beta-oxidation system was demonstrated in a particulate fraction from Neurospora crassa. The activities of all individual beta-oxidation enzymes were enhanced in cells after a shift from a sucrose to an acetate medium. The induction was even more pronounced in transfer to a medium containing oleate as sole carbon and energy source. Since an acyl-coenzyme A (CoA) dehydrogenase was detected instead of acyl-CoA oxidase, the former enzyme seems to catalyze the first step of the beta-oxidation sequence in N. crassa. After isopycnic centrifugation in a linear sucrose gradient, the intracellular organelles housing the fatty acid degradation pathway cosedimented (1.21 g/cm3) with the glyoxylate bypass enzymes isocitrate lyase and malate synthase and were clearly resolved from both mitochondrial marker enzymes (1.19 g/cm3) and catalase (1.26 g/cm3). On the basis of biochemical as well as morphological properties, these particles from N. crassa have recently been designated as glyoxysome-like particles (G. Wanner and T. Theimer, Ann. N.Y. Acad. Sci. 386:269-284, 1982). The failure to detect catalase, urate oxidase, and acyl-CoA oxidase indicate that these glyoxysome-like microbodies in N. crassa lack peroxisomal function and thus are clearly different from the various microbodies reported so far to contain a beta-oxidation pathway.

Full text

PDF
153

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blum J. J. Localization of some enzymes of beta-oxidation of fatty acids in the peroxisomes of Tetrahymena. J Protozool. 1973 Nov;20(5):688–692. doi: 10.1111/j.1550-7408.1973.tb03600.x. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Cooper T. G., Beevers H. Beta oxidation in glyoxysomes from castor bean endosperm. J Biol Chem. 1969 Jul 10;244(13):3514–3520. [PubMed] [Google Scholar]
  4. Desel H., Zimmermann R., Janes M., Miller F., Neupert W. Biosynthesis of glyoxysomal enzymes in Neurospora crassa. Ann N Y Acad Sci. 1982;386:377–393. doi: 10.1111/j.1749-6632.1982.tb21429.x. [DOI] [PubMed] [Google Scholar]
  5. Dommes P., Dommes V., Kunau W. H. beta-Oxidation in Candida tropicalis. Partial purification and biological function of an inducible 2,4-dienoyl coenzyme A reductase. J Biol Chem. 1983 Sep 25;258(18):10846–10852. [PubMed] [Google Scholar]
  6. Dommes V., Baumgart C., Kunau W. H. Degradation of unsaturated fatty acids in peroxisomes. Existence of a 2,4-dienoyl-CoA reductase pathway. J Biol Chem. 1981 Aug 25;256(16):8259–8262. [PubMed] [Google Scholar]
  7. Dommes V., Kunau W. H. A convenient assay for acyl-CoA-dehydrogenases. Anal Biochem. 1976 Apr;71(2):571–578. doi: 10.1016/s0003-2697(76)80026-7. [DOI] [PubMed] [Google Scholar]
  8. Dommes V., Kunau W. H. Purification and properties of acyl coenzyme A dehydrogenases from bovine liver. Formation of 2-trans,4-cis-decadienoyl coenzyme A. J Biol Chem. 1984 Feb 10;259(3):1789–1797. [PubMed] [Google Scholar]
  9. Fong J. C., Schulz H. Purification and properties of pig heart crotonase and the presence of short chain and long chain enoyl coenzyme A hydratases in pig and guinea pig tissues. J Biol Chem. 1977 Jan 25;252(2):542–547. [PubMed] [Google Scholar]
  10. Graves L. B., Jr, Becker W. M. Beta-oxidation in glyoxysomes from Euglena. J Protozool. 1974 Nov;21(5):771–774. doi: 10.1111/j.1550-7408.1974.tb03750.x. [DOI] [PubMed] [Google Scholar]
  11. Hashimoto T. Individual peroxisomal beta-oxidation enzymes. Ann N Y Acad Sci. 1982;386:5–12. doi: 10.1111/j.1749-6632.1982.tb21403.x. [DOI] [PubMed] [Google Scholar]
  12. Hii V., Courtright J. B. Induction of acyl coenzyme A synthetase and hydroxyacyl coenzyme A dehydrogenase during fatty acid degradation in Neurospora crassa. J Bacteriol. 1982 May;150(2):981–983. doi: 10.1128/jb.150.2.981-983.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kunau W. H., Dommes P. Degradation of unsaturated fatty acids. Identification of intermediates in the degradation of cis-4-decenoly-CoA by extracts of beef-liver mitochondria. Eur J Biochem. 1978 Nov 15;91(2):533–544. doi: 10.1111/j.1432-1033.1978.tb12707.x. [DOI] [PubMed] [Google Scholar]
  14. Lazarow P. B., De Duve C. A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2043–2046. doi: 10.1073/pnas.73.6.2043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Middleton B. The oxoacyl-coenzyme A thiolases of animal tissues. Biochem J. 1973 Apr;132(4):717–730. doi: 10.1042/bj1320717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tanaka A., Osumi M., Fukui S. Peroxisomes of alkane-grown yeast: fundamental and practical aspects. Ann N Y Acad Sci. 1982;386:183–199. doi: 10.1111/j.1749-6632.1982.tb21416.x. [DOI] [PubMed] [Google Scholar]
  17. Theimer R. R., Beevers H. Uricase and allantoinase in glyoxysomes. Plant Physiol. 1971 Feb;47(2):246–251. doi: 10.1104/pp.47.2.246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Theimer R. R., Wanner G., Anding G. Isolation and biochemical properties of two types of microbody from Neurospora crassa cells. Cytobiologie. 1978 Oct;18(1):132–144. [PubMed] [Google Scholar]
  19. Tolbert N. E. Metabolic pathways in peroxisomes and glyoxysomes. Annu Rev Biochem. 1981;50:133–157. doi: 10.1146/annurev.bi.50.070181.001025. [DOI] [PubMed] [Google Scholar]
  20. Wanner G., Theimer R. R. Two types of microbodies in Neurospora crassa. Ann N Y Acad Sci. 1982;386:269–284. doi: 10.1111/j.1749-6632.1982.tb21422.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES